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Abstract—The widespread use of Smart Home devices has
attracted significant research interest in understanding their be-
havior within home networks. Unlike general-purpose computers,
these devices exhibit relatively simple and predictable network ac-
tivity patterns. However, previous studies have primarily focused
on normal network conditions, overlooking potential hidden
patterns that emerge under challenging conditions. Discovering
the latter is crucial for assessing device robustness.

This paper addresses this gap by presenting a framework
that systematically and automatically reveals these hidden com-
munication patterns. By actively disturbing communication and
blocking observed traffic, the framework generates comprehen-
sive profiles structured as behavior trees, uncovering traffic flows
that are missed by more shallow methods. This approach was
applied to ten real-world devices, identifying 254 unique flows,
with over 27% only discovered through this new method. These
insights enhance our understanding of device robustness, and
the thus obtained profiles provide a more complete description
of the network behavior of devices, as needed, for example, for
the configuration of security solutions.

Index Terms—IoT, Smart Home, networks, robustness, secu-
rity, traffic profiling

I. INTRODUCTION

In the Internet of Things (IoT) paradigm, physical ob-
jects are equipped with sensing, computing, and networking
capabilities. This allows them to monitor or react to their
environment and exchange messages with other objects and
with remote servers [1]. A common use case of this paradigm
is the Smart Home, composed of household objects, ranging
from small power outlets to large appliances. The popularity
of Smart Home devices has increased sharply in the past years,
with a market size estimated at 101.07 billion USD in 2024
[2]. Their main appeal is to provide home automation, and
therefore convenience, to the user.

As 10T devices have very low computing resources, it is a
technical challenge to embark them with all the technology
necessary for their correct operation. Notoriously, to stay
economically competitive, manufacturers tend to expand the
user-visible functionalities on the devices’ limited hardware,
neglecting transversal aspects such as robustness or security
[3[l, [4]. Ironically, this compromise might impede the initial
incentive behind the design of Smart Home systems, i.e. user
convenience. Indeed, if devices do not provide robustness
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in the face of network communication instability, they may
become unresponsive, disrupting the whole system.

The motivation behind this work is to assess the robustness
of Smart Home devices against network instabilities. More
precisely, we aim to discover and describe network communi-
cation patterns issued by such devices in the case where their
default traffic fails.

Smart Home devices usually exhibit simple and predictable
network communication patterns [5] under ideal conditions.
Consequently, researchers have designed solutions to express
their network behavior in a compact form, a so-called profile.
The IETF has even standardized a format for such profiles, the
Manufacturer Usage Description (MUD) [6]], albeit admittedly
relatively limited [7]-[9]. Several methods have been presented
in the past to automatically create the profile of a device
[10]-[12]. For this purpose, its network communications are
observed over a certain period of time, in the wild or under
laboratory conditions. Typically, relatively complex experi-
mental setups are required [13]], [14], due to the variety of
possible interactions with the device. Data mining and analysis
techniques are then used to extract compact representations of
the network traffic and associate them with the device, or even
with specific device events.

We argue that existing approaches to profiling are insuffi-
cient for our goal of gaining comprehensive insight into the
network behavior of Smart Home devices, as they do not
aim at triggering communication patterns that only become
visible under certain network conditions, in particular when
the default communication mechanism does not succeed. For
example, an IoT device might have a list of alternative domain
names for its cloud hosted services that it will only contact if
the default domain name fails to resolve or the server behind
that name does not respond; or it can switch from using TCP
to UDP (and vice-versa), if one of the protocols is blocked.
Ignoring such behaviors leads to profiles, in which some of the
device’s communication patterns are missing or incompletely
described, making it difficult to grasp if a device is robust with
regard to network events.

In this paper, we present a framework, mostly automated
and requiring little prior configuration, to comprehensively
uncover the communication patterns of a Smart Home device.
For each type of interaction with the device, it first observes
the traffic flows that occur in an unconstrained network and



builds a set of flow descriptors from them. Such descriptors
contain Internet and transport-layer information, as well as
selected, available application-layer data, such as domain
names. The system then iteratively blocks flows corresponding
to certain descriptors and repeats the interaction with the intent
of making new flows appear. The algorithm selecting which
flows to block and the sequence of blocking experiments is not
straightforward. Our aim is to discover as many hidden flows
as possible but keep the number of experiments under control.
To do this efficiently and not end up in an infinite loop where
the same patterns appear over and over again, we store the
found descriptors in a tree that we traverse using a breadth-
first strategy, and prune using an ad hoc heuristic. The result
is a set of multi-level, tree-shaped profiles (one for each type
of interaction) for the device that describe the device’s default
and alternative communication patterns that we then explore to
assess the robustness of the device’s network communications.

Conceptually, the profiles obtained by our approach can

be treated as enhanced versions of the aforementioned ones,
such as MUD, as they encompass the base communication
patterns, and augment them with the identified hidden patterns.
Therefore, they can also be used as input configuration for
allow-list firewalls. Current state-of-the-art approaches, which
do not cover alternative communication patterns, might con-
sider the latter as malicious, whereas they are actually part
of the device’s intended behavior, only rarer. Profiles obtained
from our framework can thus provide more accurate security
configurations that do not block the legitimate communications
of a robust device.

The contributions of our work can be summarized as

follows:

o We develop and implement a framework, modular and
easily extensible, which instruments Smart Home devices
and extracts multi-level profiles for them, in a mostly
automated way. The core of the framework is a new
algorithm that, for a given device interaction, builds an
event signature, i.e., the description of flows appearing
for that interaction, and then iteratively blocks previously
observed flows, until the interaction fails or no new flow
is discovered.

o We apply our framework to a testbed network com-
prising ten off-the-shelf devices, and generate multi-level
profiles for 36 unique events, which sum up to a total
of 254 unique network flows discovered, of which 70
were “hidden”, i.e., not part of the default communication
patterns of the tested devices, accounting for over 27% of
the total number of unique flows, representing the portion
that traditional techniques are likely to miss.

o We assess the robustness of the instrumented devices, by
computing robustness-related metrics. We conclude that
most devices provide at least one backup communication
strategy, if a default communication pattern fails.

o We publish the source code of our signature extraction
algorithm at |https://github.com/smart-home-network-
security/signature-extraction, and of our experimental
framework, including the captures of the testbed’s
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Fig. 1: Typical Smart Home network with a smart lamp

traffic  at  |https://github.com/smart-home-network-
security/smart-home-hidden-communication-patterns,

The rest of the paper is structured as follows. We describe
the problem and the scope of our work in Section [[Il In Sec-
tion [[II} our methodology is explained in detail. Its evaluation
is presented in Section Section [V] presents related work
and positions them compared to ours. Ultimately, the paper
concludes in Section [VI}

II. PROBLEM STATEMENT AND SCOPE

Fig. |1| shows a typical Smart Home setup with a smart
lamp that can be controlled by a smartphone application
(called companion app in the following). The possible network
activities in this setup are highly device specific. The device
might communicate directly with the companion app in the
local home network, or do this via a manufacturer or vendor-
operated cloud server (the latter making it also possible to
control the device from outside the home network and to
receive firmware updates). In fact, many of the devices on the
market have both local and remote communication capabilities.

In line with existing work on profiling discussed in Sec-
tion we assume that the network activity is triggered by
an interaction with the Smart Home device. The aim of our
work is to obtain a profile, i.e., a description of the network
communication patterns associated to that device and inter-
action. We argue that existing approaches on device profiling,
that mostly consist in performing the interaction and recording
the resulting network activity, are not sufficient to observe
all possible communications patterns. Indeed, we expect that
some of them only appear when the default (or configured)
patterns fail or are disturbed. Our goal is to discover such
patterns in an automated way.

The solution that we will present in the next sections
requires the collection, inspection and filtering of packets sent
to and received from the Smart Home device and the device
running the companion app. If the traffic is unencrypted, we
leverage its payload. We do not analyze or modify the device
firmware, the companion app, or the server side software.
We also do not try to decrypt network traffic, therefore we
do not consider information in encrypted payload. However,
numerous research has shown that relying on unencrypted
information and packet or flow metadata, can already provide
sufficient information to accurately fingerprint IoT devices
(L1f], (12f], [15]

The terms IoT and Smart Home are quite fuzzily defined
in the literature. Our work focuses on domestic devices,
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augmented with IoT capabilities, which exhibit a precise, goal-
oriented, and limited set of functions, e.g. power plugs, light
bulbs, and cameras. More powerful/general-purpose smart
home devices (e.g. smart TVs or speaker hubs) do not exhibit
such a precise set, and are therefore considered out of scope.
Speakers usually act as an intermediary between the user
and the end device, enabling the user with voice control.
Additionally, such devices allow installing third-party apps
which provide them with limitless capabilities. This makes
the network behavior of such devices very complex and
customizable, rendering an automated analysis with our frame-
work practically unfeasible. Indeed, as the set of functions
is unlimited and not known a priori, a single device can
showcase an unbounded amount of different tree profiles, as
one profile pertains to one function.

Similarly to related research works, we only consider IP
traffic, either wired or wireless. Other protocols exist for Smart
Home devices, such as Zigbee [16] and Thread [17] over
IEEE 802.15.4 [18], or the proprietary Z-Wave [19]]. Such
protocols usually rely on a gateway or hub to connect to the
local home network. For devices using these protocols, we
profile the gateway’s IP traffic. Devices that rely on long-range
communication technologies, such as 5G or LoRaWAN [20],
are not in the scope of this paper since their traffic cannot be
locally filtered or blocked.

Finally, it should be mentioned that devices also commu-
nicate for reasons other than being triggered by interactions.
Examples include periodic heartbeat messages or messages to
discover the local network [14], [21]]. A possible approach to
profile such activities is to passively monitor the device over a
longer period and extract the traffic using periodicity models
[14]. Our approach does not pursue such communication
activities further, as in this paper we focus on the more
complex case of interaction-triggered communication patterns.

III. PROFILING METHODOLOGY

In this section, we describe our profiling methodology. We
start with an outline of our approach, followed by a detailed
presentation of its components.

A. General workflow

Fig. [2| gives an overview on the workflow of our method-
ology to obtain a profile for a Smart Home device under a
certain type of interaction. An interaction can require the usage
of a triggering source, such as a companion app installed
on a smartphone. In practice, a Smart Home device may
support different interactions (e.g., for a smart lamp: switching
on/off, changing its color, etc.) and triggering sources, and the
workflow described here must be repeated for each of them.
The workflow consists of multiple steps summarized below.
Besides initial manual configuration in Step 1, the rest of the
workflow is automated.

[Step T| consists in performing the interaction with the device
under investigation and recording the network traffic. To this
end, we connect the Smart Home device (or, for non-IP
devices, their gateway or hub) and the device running the
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Fig. 2: Overview of the profiling workflow

triggering source to a wireless (resp. wired) LAN and capture
the traffic on the Access Point (AP) (resp. switch). We call an
interaction and the resulting device state an event.

In[step 2] the traffic traces obtained are filtered and analyzed,
and an event signature is extracted. The latter consists of a set
of traffic flow descriptors, called Flow IDs in the following,
that describe the relevant features of the bidirectional flows
observed in the traces, and therefore associated with the event.
A Flow ID contains network and transport layer information,
such as host addresses and port numbers, as well as application
layer information (when available). The extracted Flow IDs
are stored in a tree-shaped data structure that allows tracking
which Flow IDs have already been observed.

In we select a Flow ID from the tree, configure
a firewall running on the switch or AP to block packets
matching that ID, and repeat steps 1 and 2. The idea is that by
deliberately blocking some of the traffic associated with the
interaction and repeating the steps 1 to 2, the device and/or
app will try alternative communication patterns.

The steps above are repeated until no new patterns are
discovered. The final result is the profile of the device for the
investigated event. It takes the form of a tree, where each node
is a Flow ID linked to the event, and the path from the root
towards a given node gives the set of parent Flow IDs which
were blocked to let the current Flow ID appear. We define
the Flow IDs initially occurring without any traffic blocking
required as first-level Flow IDs, whereas the ones appearing
as a result of traffic blocking are hidden Flow IDs. The latter
are the communication patterns which can be discovered only
through our multi-level approach, and therefore missed by
state-of-the-art techniques.

B. Step 1: Traffic capturing

Similarly to PingPong [11] and loTAthena [15]], we start
capturing the network traffic, perform the interaction, then
stop the traffic capture after a predefined duration d. We
repeat each interaction and the traffic capturing m times. Our
framework automates interactions triggered by a companion
app by leveraging the Android Debug Bridge (ADB) tool
[22] to generate touch events on the smartphone running the
companion app. The only manual configuration required by the
framework is to plug in the device under test and to connect it



to the LAN, as well as setting up the framework with the
smartphone’s screen coordinates to issue the touch events.
We also consider power-cycling the Smart home device as
an interaction (called boot interaction in the following). To
automate the boot interaction, we plug the device in a smart
power outlet controlled by our framework.

We collect all incoming and outgoing traffic of the Smart
Home device and of the smartphone, since we consider the
activities of both of them potentially relevant for the charac-
terization of the event. Between captures, we introduce random
waiting intervals to avoid the systematic capturing of periodic
background traffic unrelated to the interaction. Control plane
packets are filtered out, in particular all ARP, ICMP, DHCP
packets, TCP Handshake packets, and TLS Handshake pack-
ets, except Client Hello packets containing the Server
Name Indication (SNI) extension.

As our approach is based on blocking traffic, it can happen
that the interaction does not cause the desired state change
in the Smart Home device. For the event signature extraction
described in step 2, it is important to filter out such unsuc-
cessful event executions. We do this by verifying the device
state, e.g. whether the lamp has turned on, after each capture.
To obtain the device state, we leverage third-party libraries
designed to control the device, e.g. python-kasa [23] for
the TP-Link HS110 plug, while ensuring this does not interfere
with the traffic related to the studied interaction. We believe
this method is more precise and reliable than the approach
followed by Mandalari et al. [24] which compares screenshots
of the companion app to check whether the displayed status
of the Smart Home device has changed. If we did not find
such a library, or we failed to include it in our framework, we
fall back to screenshots, too, but we compute the Structural
Similarity Measure (SSIM) [25]] and consider two screenshots
identical if the SSIM is over an empirically defined threshold,
instead of directly comparing image pixels like Mandalari et
al. The result are m™ < m traffic captures of successful event
executions.

C. Step 2: Event signature extraction

For each of the m™ packet traces obtained in step 1, the
recorded packets are first aggregated to Flow IDs, and then the
event signature is extracted. This happens in multiple steps that
we now describe.

1) Replacing IP addresses by domain names: During an
event, the Smart Home device or the companion app may com-
municate with cloud services provided by the device vendor
or other external hosts. Where possible, we replace non-local
source and destination IP addresses by domain names. This
makes the signature extraction more robust against changes in
the IP addresses caused by cloud migrations or load balancing.
To do so, we keep a table matching encountered domain names
with their corresponding IP address(es). We first populate
the table with entries from the LAN gateway’s DNS cache,
and then update it whenever a packet bearing domain data

is observed, i.e. a DNS query/response or a TLS Client
Hello message with the SNI extension]l]

2) Aggregating packets to Flow IDs: Packets that share
all attributes in the set of properties below are grouped to
a bidirectional flow, and the attributes form the Flow ID of
that flow.

e The hostname (domain name or IP address) of the source
and destination. The Flow ID’s source is the source of
the first packet in the bidirectional flow.

e The protocol (e.g. TCP or UDP).

o The source and destination ports. We only consider a port
if it belongs to a well known service (e.g. port 80) or if it
appears, for the given combination of the other attribute
values, in all m™ packet traces. This means, for example,
that the packets of all TCP connections from a client A
to the port 80 of server B are aggregated to a single flow
and the random client ports used by A are ignored and
not further considered. The same is also done for vendor-
specific ports, thanks to the above rule.

e Application-specific data for known application layer
protocols, amongst others: query name and query type
for DNS; method and URI for HTTP; message type, code
and URI for CoAP. Consequently, for example, a DNS
response is grouped with its query (based on the query
type and name).

3) Building the event signature: The aggregation of packets
to Flow IDs produces a set f; of Flow IDs, with 1 <14 < m™,
for each of the m™ packet traces. We define the event signature
s for the investigated interaction as the set of Flow IDs that
appear in all packet traces:

mT
5= ﬂ fi
i=1

By only keeping the intersection, we filter out Flow IDs
belonging to network communications that are not determinis-
tically associated with the event, such as periodic or sporadic
messages, as discussed in Section [[I] and subsection [[II-B]

D. Step 3: Blocking flows with the event signature tree

The event signature tree is a connected, acyclic, rooted tree
where the nodes of the tree are Flow IDs, except for the root
node. The tree is used to keep track of the Flow IDs already
seen and blocked.

1) Tree creation: At the beginning, when the profiling starts
for a specific interaction of the device, the tree only consists
of the root node. The firewall running on the switch or AP
to which the Smart Home device and the companion app are
connected does not block any traffic.

After obtaining the event signature s from step 2, we add
each Flow ID in the signature as a child node to the root node.
For the next iteration of steps 1 through 3, we select a node,
i.e. a Flow ID, that has not been visited yet from the tree and

I'We also tried reverse DNS lookups, but since most of the servers contacted
during our experiments were hosted at big cloud providers such as Amazon,
no meaningful data was obtained, and we abandoned this approach.
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Fig. 3: Node pruning. The nodes ©, ®, and ® are not further
explored (X) in the BFS traversal because nodes with the
same Flow ID have been already seen (nodes B), @, and O,
respectively).

instruct the firewall to block all packets matching that node
and all its ancestors in the tree. The node will be marked as
visited and the newly found Flow IDs will be added as children
to it, and the procedure is repeated.

The algorithm ends if no unvisited nodes are left. The-
oretically, the algorithm could continue to run indefinitely
if new Flow IDs are discovered in each iteration. However,
in our experiments, the algorithm always terminated after
a finite number of iterations because the more Flow IDs
are blocked, the more constrained the communication of the
device becomes and the fewer successful event traces are
captured, until no more new Flow IDs are added to the tree.

2) Tree traversal and pruning: To select the next node,
we use a Breadth-First Search (BFS) [26] traversal, i.e., we
process all nodes at a given depth before proceeding to the
next level. Our objective is to trigger all possible network flows
corresponding to a Smart Home device event, i.e., express all
possible nodes in the event signature tree. To manage resource
usage and execution time, two strategies are used to limit the
size of the tree.

Firstly, we already remove event signatures for which less
than half of the trace captures were successful, i.e., m* <
m/2, in step 2. In this way, we filter out event signatures
for which there is not enough data to reliably determine the
Flow IDs that are with a high probability linked to the event.
In practice, we observe a polarization in terms of successful
event execution: either all event executions succeed (m™ = m)
or none (m* = 0). The latter occurs when the firewall rules
prevent the event’s success. Setting the threshold at m/2 is
therefore a conservative choice.

Secondly, we prune branches of the tree which will likely
not provide new information, i.e. no new Flow IDs, by
applying an ad hoc pruning heuristic. To determine which
heuristic we can apply without losing any information, we ran
preliminary experiments with one of our testbed’s devices, the
TP-Link HS110 smart plug [27]. We observed that, for any
two nodes with the same Flow ID, their children were always
identical. We conclude it is likely that no new information
will be found by processing a node identical to one which has
already been processed, regardless of its position in the tree.
Therefore, we adopt the node pruning heuristic, illustrated in
Fig.|3f a node is pruned if an equivalent node, i.e., a node with
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Fig. 4: Experimental Smart Home network.

the same Flow ID, has already been processed. Additional
insight concerning this preliminary experiment is given in
appendix [C]

3) How to block packets matching a Flow ID: As ex-
plained, a Flow ID comprises traffic features from multiple
networking layers, such as hostnames, port numbers, and
application layer information. The presence of application
layer information in the Flow ID requires a firewall that is
able to match and reject traffic based on information found
at that layer. A simple firewall, such as the default Linux
kernel firewall NFTables [28|] (successor of the well-known
IPTables) is not sufficient. Instead, we leverage the open-
source Smart Home firewall we developed as previous work
[9]. It is based on NFTables, while enhancing its capabilities
to match additional application-layer protocols. However, this
firewall can only work with allow rules, while our profiling
algorithm is based on blocking rules. Therefore, we modified
the firewall, turning it into a deny-list firewall. In our prototype
implementation of the profiling algorithm, we translate the list
of Flow IDs into firewall blocking rules and let the firewall
enforce them for the next batch of experiments. The code of
the modified firewall is available at https://github.com/smart-
home-network-security/firewall-blocklist.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental setup, and the
results obtained from applying our framework to it.

A. Experiment setup

We apply our methodology to a controlled testbed network
comprised of real-world devices, mimicking a typical Smart
Home network, depicted in Fig. l] We examine an array of
commercial, off-the-shelf Smart Home devices, including four
power plugs, three cameras, and three light bulbs. The profiled
interactions, per device category, are the following:

o For all devices: booting the device;

o Power plugs: toggling them on/off;

o Cameras: streaming their video feed;

o Light bulbs: toggling them on/off, changing their bright-

ness, changing their color.

In a real Smart Home network, a user could choose among
various apps to control their devices, including the device’s
official companion app (from its manufacturer or vendor),
a third-party app, or a Smart Home automation platform
which provides unified control over devices from different
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Device [ App | Interaction | Event ID
Power plugs
/ boot 1
TP-Link HS110 Kasa Smart toggle 11
[27] TP-Link Tapo toggle 12
SmartThings toggle 13
SmartThings Outlet } / boot 2
[33] SmartThings toggle 14
/ boot 3
Tepo R110 TP-Link Tapo |  toggle 15
[34] SmartThings toggle 16
Woox R5024 (Tuya) / boot 4
[35] Tuya Smart toggle 17
Cameras
Xiaomi MJSXJ02CM / boot 5
[36] Mi Home stream 18
/ boot 6
Tap037C 200 TP-Link Tapo stream 19
1371 SmartThings stream 20
D-Link DCS-8000LH / boot 7
[38] mydlink stream 21
Light bulbs
/ boot 8
Philips Hue toggle 22
. . Hue Essentials toggle 23
Phlclgzr}ﬁ;w:gg ?nd Hue Essentials brightness 24
[ 39€ Hue Essentials color 25
SmartThings toggle 26
SmartThings brightness 27
SmartThings color 28
Alecto Smart-Bulb10 / boot g
(Tuya) [40] Tuya Smart toggle 29
Tuya Smart color 30
/ boot 10
TP-Link Tapo toggle 31
TP-Link Tapo brightness 32
Tapo 4L1530E TP-Link Tago cgolor 33
(411 SmartThings toggle 34
SmartThings brightness 35
SmartThings color 36

TABLE I: Devices in our testbed, with corresponding apps
and interactions. { indicates Zigbee devices, for which the hub
traffic was considered.

manufacturers. Such different home automation methods can
trigger diverging, but valid, communication patterns. To cover
such cases, for all interactions other than booting, we derive
up to three usage scenarios:

o For all devices, we issue their interactions using their
official companion app;

« For devices that support it, we also control them using
the app of the popular home automation platform Smart-
Things [29];

o For the TP-Link plug and the Hue light bulb, we also
experiment with other apps; respectively, TP-Link Tapo
[30] (another app from the same manufacturer, targeted
toward Tapo-branded devices) and Hue Essentials [31]]
(third-party app for Hue devices).

The smartphone running the device-specific apps is a Cross-
call CORE-X4 [32]] with the Android 10 OS.

The complete device references are listed in Table [l along
with the corresponding smartphone apps and interactions in-
strumented. The numerical identifier used as x-axis for some
subsequent plots pertains to the Event ID listed in the table,

@ phone<+plug:9999 [TCP]
t plug<>79.125.56. 92:443 [HTTPS]
phone<+n-wap.tplinkcloud.com:443 [HTTPS]
® phone<plug:9999 [UDP]
© phone—mDNS(224.0.0.251):5353 [UDP / mDNS]
© phone—broadcast(255.255.255.255):9999 [UDP]

root

L pluges34.240.186.173:443 [HTTPS]
plug<+n-devs.tplinkcloud.com:443 [HTTPS]
® phone+rxx-device-telemetry...:443 [HTTPS]
® plug<«+gateway:53 [UDP / DNS: A tplinkapi]
@ plug<rusel-api.tplinkra.com:443 [HTTPS]

Fig. 5: Event signature tree for the TP-Link HS110’s foggle
event. Bidirectional flows are represented by a double-headed
arrow, whilst a single-headed arrow is used for unidirectional
flows. When indicated, the port is associated with its host.

which is a unique number assigned by us to each of the tested
combinations of device, app, and interaction. As explained,
we only consider IP traffic, whether over Ethernet or Wi-Fi.
Therefore, for the two devices communicating using Zigbee,
we profile the traffic issued by their hub, i.e. the Hue bridge for
the Hue lamp, and the SmartThings hub for the SmartThings
Outlet, respectively. For the boot interaction experiments over
those devices, we synchronously power-cycle both the device
itself and its hub.
Our practical experimental parameters, inspired by related
works PingPong [11]] and loTAthena [15], are the following:
e Number of event iterations: m = 20;
o Traffic capture timeout: d = 20 seconds (90 seconds for
interaction boot);
o Duration between two event iterations: randomly chosen
between 40 (120 for interaction boot) and 150 seconds.

B. Example signature tree

As an example of our framework’s results, we present the
event signature tree generated for one device of our corpus,
namely the TP-Link HS110 [27]. This device being a smart
power plug, it provides one interaction, i.e. toggling it on
and off. For this experiment, we controlled the device using
its official Android companion app, i.e. Kasa Smart [42].
The resulting signature tree is displayed in Fig. [5} To avoid
unnecessarily cluttering the figure, we only show the first
occurrence of each unique flow. We empirically observe that
each one of the listed first-level flows also occurs as a child
of every other node in the tree, i.e. the communication pattern
is relatively stable. In certain cases, a hidden flow will appear
at deeper levels, which embodies a backup communication
strategy when the default one fails.

By default, toggling the plug triggers seven different flows:

@ between the phone and the plug’s TCP port 9999;

B between the phone and the plug’s UDP port 9999;

© from the phone to the mDNS multicast address
(224.0.0.251, UDP port 5353);
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Fig. 6: Robustness score. The x-axis shows the Event ID.

from the phone to the broadcast address’
(255.255.255.255) UDP port 9999;
HTTPS between the phone and the server

xx—device-telemetry-gw.iot.i.tplinknbu.com;
DNS query/response from the plug to the LAN gateway,
for the domain name usel-api.tplinkra.com;
@ HTTPS between the plug and the

usel-api.tplinkra.com.

@ & O

server

Flows © and © are unidirectional, while the remaining ones
are bidirectional.

When one of those flows is blocked, the device might issue
different network traffic to perform its event. Indeed, when the
TCP communication @ on the plug’s port 9999 is blocked,
we see two new HTTPS flows appearing: between the phone
and the server n-wap.tplinkcloud.com, and between the
plug and the IPv4 address 79.125.56.92. The former also
occurs when other first-level flows are blocked, including the
similar pattern ® using UDP instead of TCP. Both flows are
part of a backup strategy, going through the internet, if the
device is not able to communicate locally with the controlling
phone. Such hidden backup flows also appear as children of
the first-level flow ©.

C. Assessing device event robustness

The experiments in our testbed of devices result in the
extraction of 254 unique Flow IDs, of which 70 are hidden
(i.e. 27.56%). Their distribution over the 36 tested event con-
figurations is shown in Fig. |[11]in the appendix. Hidden Flow
IDs embody the alternative communication strategies that a
device might use if the default one fails, effectively enhancing
the device’s robustness to network instability (remember that
we only keep Flow IDs associated with successful event
executions). We define the robustness score as the count of
hidden Flow IDs. Recall that a hidden Flow ID is one which
only appears in the tree deeper than the first level, i.e. resulting
from blocking specific flows. We compute this metric for each
tested event; Fig. E] shows the results.

Out of the 36 instrumented events, 23 (63.9%) have a
robustness score of at least one (mean 1.94). This value
is encouraging, as it means that most types of interactions
dispose of at least one backup strategy in the case of a failure.

To gain further insight into the distribution of robustness
scores, Fig. [/| shows the same robustness score, grouped along
three axes, namely:
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Fig. 7: Robustness score for all device interactions, grouped
per device type, app, and manufacturer. Each marker repre-
sents the robustness score of one event.

« Device category;
o Controlling app;
e Manufacturer.

We identify an event with a robustness score significantly
higher than all others: the boot event for the SmartThings
Outlet device. Being a Zigbee-communicating device, its boot
event consists in switching on the plug itself as well as its
related hub. As hubs are commonly used to provide centralized
control over a Smart Home network, they must provide a way
to detect the devices present in the network. It is expected
that, if the default way fails, the hub will follow backup
communication paths to provide this functionality.

We observe that the different device categories in our testbed
do not provide the same robustness. The most robust devices
seem to be the power plugs. A rationale might be that, as the
plugs’ operation (switching on or off) is the simplest, it takes
less effort to the manufacturers to provide backup strategies.
However, given the size of the testbed compared to the vast
number of devices on the market, this observation should be
taken as indicative only. This also applies to the following
discussion of the companion apps and manufacturers.

Among the companion apps, Tuya seems to be less robust
than the others. While most apps provide device control either
via the local network or through the cloud, Tuya devices are
notoriously reluctant to LAN-based control, preferring cloud-
based communication. This decision reduces their robustness
by design, as, when the cloud endpoints cannot be reached,
the device cannot function properly. SmartThings boasts a
good score, both as a controlling app and a manufacturer,
helped by a very high robustness score for the SmartThings
Outlet’s boot interaction. We can also see that the “other” app
category provides no backup strategy whatsoever, suggesting
that a user should prefer using trusted and official apps, even
if the devices’ API is theoretically open.

We illustrate the effect of the choice of the app with the
Philips Hue lamp device and its foggle interaction, which
we have triggered by the official app (Philips Hue), the
SmartThings app, and a third-party app (Hue Essentials). The
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official app and SmartThings show similar results: five and
six first-level Flow IDs respectively, and one hidden flow for
each. However, when using the Hue Essentials app, only three
first-level flows are extracted, and no hidden flow.

The Xiaomi camera also stands out with a high mean score.
As cameras are usually tied to more critical functions, such
as monitoring a home against potential intrusions, Xiaomi
followed a respectable rationale here. TP-Link seems quite
robust, while Philips, even as a trusted device manufacturer,
disappoints in terms of robustness.

D. A closer look at DNS data

The Domain Name System (DNS), which allows communi-
cating with hosts by providing a domain name instead of their
IP address, is a useful tool to provide application robustness.
Here, we steer our analysis towards interactions with the DN'S
protocol, guided by two questions:

o If the servers the device tries contacting are unresponsive,

will it contact servers with other domain names?

o If the device’s default DNS resolver is unreachable, will

the device try other ones?

We focus on event signatures related to boot interactions,
as those proved to provide the most information concerning
DNS usage. Fig. [§] shows the data related to both questions:
the count of unique domain names contacted, and that of DN'S
resolvers queried. In both cases, the first-level E| and the hidden
count are shown.

1) Server’s domain names: We observe that, out of the 10
boot events, six consider contacting at least one alternative
domain name if the default one fails.

2) DNS resolvers: Out of the 17 DNS resolvers contacted,
only two are hidden resolvers. One of them is simply the LAN
gateway (192.168.1.1), meaning the only real new DNS
resolver discovered at a level deeper than one is the Chinese
public DNS resolver 114.114.114.114, contacted by the
Xiaomi camera when the LAN gateway is not responsive.
This result shows that, regarding domain name resolving,
Smart Home devices still lack robustness. Indeed, every device
should try contacting a backup resolver if the primary one fails,
as this has been made easy thanks to publicly available re-
solvers such as Cloudflare’s 1.1 .1 .1 or Google’s 8.8.8. 8.

2In this context, the qualifier first-level indicates the occurrences at the
signature tree’s first depth level; it has no relation with the similarly named,
but unrelated, domain names’ top-level domain.
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Fig. 9: Pruned Flow IDs. The x-axis shows the Event ID.

E. Analysis of the node pruning heuristic

We analyze the effect of our tree pruning heuristic described
in Section [[TI-D2] Fig. [9]illustrates, for every studied event, the
count of Flow IDs which have been pruned while generating
the event signature tree, split per node depth. As a reminder,
this heuristic states that we prune a node, i.e. we do not process
the children of a node, if an equivalent node is already present
in the tree; the depicted count is therefore equal to the number
of duplicate Flow IDs in the tree.

We observe that the count is generally important. In terms
of efficiency, this means that our heuristics manages to sig-
nificantly reduce the time and resources taken by the event
signature tree generation.

We also notice that most of the duplicate Flow IDs occur
at depth 2. Those represent all the flows that occur after
blocking a first-level flow. Their large number shows that most
devices exhibit a high redundancy in communication patterns.
Indeed, if the device must change its network behavior to
circumvent a traffic restriction, it will usually only change the
affected protocol, e.g. by contacting another domain name or
switching from TCP to UDP; it will not completely modify
the communication pattern.

F. Comparison with related work

We compare the profiles generated by our framework with
those generated by methods proposed in related work, namely
PingPong [11]|, BehavloT [14], and MUDgee [43], for the
devices present in both their testbeds and ours. PingPong and
BehavloT profile specific interactions of a device, whereas
MUDgee profiles the device as a whole. Table |lI| summarizes
the devices and interactions covered by each work, as well as
the smartphone apps which produced the subset of our data
used for our side in the comparison.

Fig.[10|compares the number of unique Flow IDs discovered
by each work and by us. Data from PingPong and MUDgee
were taken from their reported results, whereas BehavloT’s
results were reproduced on our side. The three related works,
by design, do not explore the event signature tree deeper than
the first level. Regarding the specific interactions, our approach



PingPong | BehavloT | MUDgee
Devices Apps 143] [11] [14]
TL plug Kasa Smart toggle toggle device
Hue lamp | Philips Hue toggle X device
ST plug SmartThings toggle boot device
DL cam mydlink X stream X

TABLE II: Related works’ device and interaction coverage.
Device legend: TL plug = TP-Link HS110; Hue lamp = Philips
Hue lamp; ST plug = SmartThings Outlet; DL cam = D-Link
camera.
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Fig. 10: Comparison of discovered unique Flow IDs between
three related works and ours. Note that MUDgee profiles
devices as a whole and not for individual interactions.

is, as expected, able to extract more Flow IDs than PingPong
and BehavloT, thanks to a deeper tree inspection, and also
a more thorough communication pattern extraction, even at
the first level. To compare our results with the device-level
profiles created by MUDgee, we count the unique Flow IDs
over all interactions of a device. For two of the instrumented
devices, namely the SmartThings Outlet and the Hue light,
our approach is again able to extract a significantly higher
number of Flow IDs than MUDgee. However, the number
of Flow IDs is identical for the TP-Link HS110. A manual
investigation shows that the extracted Flow IDs are different:
10 out of 14 MUDgee flows are NTP traffic towards various
servers, whereas our solution did not extract any NTP patterns.
This traffic might be part of periodic patterns, which are
not covered by our approach; as explained in Section |[II-B|
our methodology excludes traffic that does not appear in
every iteration of a tested interaction from the profile building
process. On the other hand, we extract 10 non-NTP traffic
patterns which were not detected by MUDgee.

Additionally, we compare the number of domains names
discovered by our approach with those reported by Mandalari
et al. [24]. The latter focuses on extracting the hosts from
Smart Home communication patterns. Table |I1I| shows, in the
columns “Total ours” and “Total theirs”, the total number of
unique domain names discovered by our approach and by
theirs for the devices and interactions covered in both works.
We observe that our multi-level approach is able to discover
more domain names. However, it should be noted that changes

in the firmware of the devices since the publication of the cited
article [24]] could influence the results.

A direct comparison of the domain names beyond the
mere numbers is unfortunately not possible. This is because
Mandalari et al. were primarily interested in finding “non-
essential” hosts, i.e. hosts that can be blocked, for example
for privacy reasons, without negatively impacting the essential
functionality of an IoT device. Consequently, while the total
numbers are known, they only published the domain names
of non-essential hosts, whereas we do not differ between
essential and non-essential ones. Nevertheless, we have also
included the actual domain names in Table The differences
between the two works can be explained by the fact that our
approach actively looks for hidden communication patterns,
the fact that their work is focused on identifying non-essential
hosts, and the reasons already mentioned above. For ex-
ample, the domain name ecdinterface.philips.com
does not exist anymore (in 2025), and the domain name
diagnostics.meethue.com could be part of a periodic
or sporadic pattern filtered out by our approach. This can also
explain the empty intersections between the two works for two
of the tested devices.

V. RELATED WORK

Research on IoT device profiling has been fruitful in the
last years. Such works lie at differing layers of abstraction,
which can be classified along two orthogonal axes:

e Object abstraction: which semantic unit is profiled, from
individual events, to single devices, to the IoT network
as a whole.

e Behavior abstraction: whether the work intends to profile
the low-level network traffic, which can be further dis-
sected into individual packets or aggregate flows, or the
higher-level abstract device events retrieved from home
automation systems.

In the following, we will summarize related works, and
position them along the aforementioned abstraction axes;
Table [[V| shows the resulting classification.

Girish er al. [4] conducted the first comprehensive analysis
of LAN Smart Home traffic. They exhaustively characterized
the protocols used, highlighting the security and privacy vul-
nerabilities, of intra-network device communication.

Among the numerous proposals for IoT device behavior
models, the most widespread is probably the IETF’s MUD
standard [6f], as it has been standardized and backed up
by multiple big players, including Cisco [46]. Subsequently,
research leveraging this standard was fueled, including Hamza
et al.’s solution to generate MUD profiles from network traces
of IoT devices’ traffic [[10]. The generated profiles, however,
suffer from the shortcomings inherent to the MUD standard,
namely, among others, the lack of support for protocols other
than IP (v4 & v6) on layer 3, and TCP, UDP and ICMP on
layer 4. In previous work [9] proposed a syntax to express the
intended network behavior of devices, inspired by MUD, while
overcoming some of its shortcomings, and including support
for traffic related to cross-device interactions.



Device & interact. | Total ours | Total theirs Both Ours only Theirs only
TP-Link HS110 usel-api.tplinkra.com euw |-device-telemetry-gw.iot.i.tplinknbu
5 4 ) AT n-wap.tplinkcloud.com n-deventry.tplinkcloud.com
boot & toggle euw l-api.tplinkra.com .
n-devs.tplinkcloud.com
hub.smartthings.com
SmanTltl)lél(is Outlet 4 3 / ucscl)lrflr{;:é)t?\rlliet:ct.smamhmgs.com fw-update2.smartthings.com
y.smartthings.com
dc2-eu01-euwestl.connect.smartthings.com
mgqtt-eu-01.iot.meethue.com
Philips Hue lamp t1me.me§thue.com diagnostics.meethue.com
5 4 / ntp2.aliyun.com > .
boot ntp 4.a1iyun.com ecdinterface.philips.com
time4.google.com

TABLE III: Domain names extracted by Mandalari et al. [24] (referred to as “theirs”) and our work (referred to as “ours”).
Note that the domain names reported by Mandalari et al. only concern non-essential hosts.

Event Device Network
Packets PingPong [L1], loTa [45| Previous work [9]]
D-interact [44] ;
Flows Mandalari [24], MUD |o], Previous work [9]], |
This work Hamza [[10] Girish [4]
Events / BehavioT [14]

TABLE 1IV: Abstraction level of device behavior models in
our work and in the literature

Regarding research efforts to extract event signatures from
network traffic, three works follow an interact & measure
workflow similar to ours: PingPong [11]], D-interact [44], and
IoTa [43]]. Nevertheless, all three lie at a finer granularity level
than our work, as their signatures are composed of individual
packets, and leverage packet-level metadata, such as the packet
size. We argue that such features can be subject to network
churn and therefore vary from one event execution to the other,
making them imprecise to accurately characterize network
behavior.

Mandalari et al. [24] centered their analysis on the hosts
contacted by Smart Home devices, characterized mainly by
their domain names, but falling back to their plain IP address
if the domain name was unavailable. Their goal was to identify
non-required hosts, i.e. hosts which could be blocked without
impairing the device’s operation, e.g. telemetry or advertise-
ment services. While they designed a workflow similar to ours
to identify the successful events, they did not further explore
the event signature tree.

Hu et al. proposed BehavloT |14, a system which models
the behavior of a whole Smart Home network, with the intent
of using it to detect when the network produces unintended
behavior, potentially due to unwanted communication, or even
a security breach. Their model is twofold: on the one hand,
they model individual devices events; on the other hand,
cross-device interactions. Their complete model is generated
based on the network traffic produced by the devices, and
takes the form of a probabilistic Finite State Machine (FSM),
representing all the possible event transitions in the home
network.

All the above-mentioned works have in common that, unlike
our work, they do not actively attempt to discover hidden
communication patterns.

Finally, the concept of chaos engineering [47] is related to
our approach. It consists in injecting faults (e.g. network loss
or latency) or heavy load (e.g. on CPU, memory, etc.). While
our approach shares some concepts with chaos engineering, its
novelty resides in the fact that we are the first to apply it to
this extent in the context of smart homes. Moreover, today, no
chaos engineering tool provides control over network traffic
at a protocol level as precise as us, by blocking traffic based
on specific fields. The most precise is Steadybit [48], which
allows blocking TCP altogether.

VI. CONCLUSION

In this article, we presented a novel methodology and frame-
work to extract comprehensive, multi-level traffic signatures
from Smart Home device events, whereas existing works are
limited to first-level signatures. The signatures take the form
of trees, with the nodes being the constitutive traffic flows. By
the usage of a dynamic blocking scheme, our approach allows
uncovering hidden traffic patterns that only occur when the
default communication mechanisms of a device fail.

We show that more than half of the tested devices exhibit
such hidden traffic patterns. In average, two hidden flows are
discovered for each device, across all studied interactions with
the device. Our work highlights the robustness capabilities
of Smart Home devices, by proposing a new metric dubbed
the robustness score. We can envision that, in the future,
such a score might be used as a marketing argument; indeed,
customers would prefer a device which is able to function even
in inhospitable network conditions.

As future work, we would like to apply our methodology
to scenarios where multiple Smart Home devices are involved
in a single interaction. This is conceptually supported by our
framework, but will require an extension of the mechanisms
we use for event triggering. In this case, approaches to further
automate the latter should also be investigated. Besides, our
robustness analysis only focused on binary traffic verdict, i.e.
either the traffic passes or is blocked. To further extend our ro-
bustness analysis, we could consider other traffic disturbances,
such as limiting the traffic rate and inserting traffic bursts.
A study covering such bursts would be transversal to ours,
focusing more on robustness with respect to, e.g., DoS attacks.
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Fig. 11: Unique Flow IDs. The x-axis shows the Event ID.

ACKNOWLEDGMENTS

F. De Keersmaeker is funded by the FR.S.-FNRS Research
Fellow Renewal [ASP-REN] grant with number 40017864.
R. Sadre is supported by the Walloon Belgian region project
CyberExcellence. C. Pelsser is supported partially by grant
#1318167 from the Cisco University Research Program
Fund, an advised fund of Silicon Valley Foundation, and
the Win4Collective CARAPACE project. All icons are from
flaticon.com.

APPENDIX

A. Statement on ethical issues

No ethical issues were raised by this work. Our device
profiling activities are in line with the EU legislation on reverse
engineering [49]], [50]. All experiments were performed in a
controlled environment, and did not involve any user personal
data or other privacy concerns.

B. List of protocol fields supported by the firewall

Table [V] displays all the protocol fields which can be
leveraged by the firewall to block packets.

C. Event signature tree size without pruning

In this appendix, we give additional insight advocating for
our event signature tree pruning heuristic. We generated a
sample tree, by performing preliminary experiments with the
toggle interaction of the TP-Link HS110 [27]. The size of the
complete tree was huge: it comprised 75 Flow IDs in total.
However, among these, only five were unique. As explained
in the main text (Section [[II-D2)), each occurrence of the same
node had the same set of children Flow IDs. We deem our node
pruning heuristic will not lose information, and is efficient in
reducing the tree to a manageable size.

D. Additional results

Fig. [T1] shows the count of unique Flow IDs discovered by
our framework for each investigated event, split into first-level
and hidden Flow IDs. The x-axis pertains to the event ID, as
provided in Table
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