
Enforcing RPKI-Based Routing Policy on the Data Plane at

an Internet Exchange

Josh Bailey

Google

joshb@google.com

Dean Pemberton,

Andy Linton

School of Engineering and

Computer Science

Victoria University of

Wellington, New Zealand

{dean,asjl}@ecs.vuw.ac.nz

Cristel Pelsser,

Randy Bush

IIJ

randy@psg.com,

cristel@iij.ad.jp

ABSTRACT
Over a decade of work has gone into securing the BGP rout-
ing control plane. Through all this, there has been an oft-
repeated refrain, “It is acknowledged that rigorous control
plane verification does not in any way guarantee that packets
follow the control plane.”We describe what may be the first
deployment of data plane enforcement of RPKI-based con-
trol plane validation. OpenFlow switches providing an ex-
change fabric and controlled by a Quagga BGP route server
drop tra�c for prefixes that have invalid origins without re-
quiring any RPKI support by connected BGP peers. We also
report on our operational experience, scaling and adminis-
trative problems and, finally provide directions for solving
those. The system described is carrying production tra�c.

1. INTRODUCTION
The Border Gateway Protocol (BGP) [4] is the predomi-

nant protocol used on the Internet to exchange reachability
information between two di↵erent autonomous networks. It
is through this successive joining of autonomous networks
(known as Autonomous Systems, or ASs) that we arrive at
the massive global network we know as the Internet. IP
prefixes are associated with ASs that originate these net-
works in BGP. These advertisements are carried across the
Internet and are used by routers (subject to additional op-
erator policy and configuration) to forward packets to their
particular destinations. For over a decade, a design group
and then the IETF SIDR Working Group have been devel-
oping a data repository known as the Resource Public Key
Infrastructure (RPKI) [1], and protocols [2] [3] to validate
the BGP protocol announcements. In this paper, we rely on
the RPKI infrastructure. We use OpenFlow to enforce BGP
policies on the data plane, namely here to allow tra�c only
along routes with a valid origin.

1.1 Authenticating routing announcements

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

While there are mechanisms in place to provide strong
authentication between two BGP peers [5], they do not ad-
dress the validity of the IP prefix advertisements themselves
- whether a given AS is entitled to originate a given pre-
fix. Examples of networks being originated by ASs which
had no legitimate authority, either by accident or design
to do so, have been occuring frequently over a long period
of time [6]. More information than is currently available
in BGP messages themselves is required to make decisions
about the validity of routing advertisements. While oper-
ators are able to add configuration (local policy filtering)
to address certain cases, like ignoring a remote network’s
advertisement of networks known to be local, they do not
address the more general case. It is also possible to compare
routing announcements on an ad hoc basis with databases
such as the RIPE IRR, with the caveat that such databases
are not intended to be integrated in real time with the con-
trol plane [7].

RFC6481 in particular describes how to improve acciden-
tal mis-announcements of an IP prefix from the wrong AS.
This is referred to as RPKI-based origin validation. Routers
use RPKI data to validate the BGP announcements they
receive, and drop announcements for prefixes with incor-
rect origin ASes. It has been suggested however, that even
though RPKI-based origin validation looks to cryptographi-
cally validate that a given autonomous system is authorised
to originate a given prefix, there is no mechanism enforcing
this in the ’data plane’.

This is compounded by the fact that, to-date the fea-
tures required to implement RPKI-based origin validation
on commodity networking equipment have been relatively
slow to market. There is also some administrative overhead
in deploying and operating RPKI (including device certifi-
cate management). These factors have had a material im-
pact on the speed at which the Internet at large is able
to take advantage of the security enhancements o↵ered by
RPKI-based origin validation.

1.2 Data plane enforcement via SDN
Software Defined Networking (SDN) may be in a unique

position to ease some of these limitations of current systems
and enable network operators to enjoy some of the security
benefits of RPKI-based origin validation before those fea-
tures are fully available on their legacy non-SDN capable
hardware.

In response to the common security problems associated

REANNZ
AS 38299

WIX
AS 9439

Openflow + BGP

GLOBAL
RPKI DB

switch #1 switch #2

BGP + traffic BGP + traffic
traffic

CARDIGAN

quagga + rtrlib
controller

Figure 1: CARDIGAN Overview

with Multilateral Internet Exchanges [8], over the last cou-
ple of years [9], the CARDIGAN SDN Internet Exchange
(SDX) in New Zealand has been experimenting with the
use of OpenFlow controlled exchange switches to enforce
Layer-3 BGP policy at Layer-2 in order to prevent providers
from accidentally or intentionally using a neighbor as a de-
fault exit and similar erroneous forwarding behavior and to
enforce BCP38. Exchange peers (REANNZ, and peers on
the WIX) use a Quagga-based [10] route server to exchange
routes among themselves. Quagga then programs the Open-
Flow switches to only forward data for those routes, with all
other tra�c dropped by default. By incorporating RPKI
relying party (RP) functionality into this system we have
developed a mechanism with which we can use RPKI de-
rived information to influence whether flows are pushed onto
the data path. This way, RPKI policy is enforced across the
CARDIGAN exchange without requiring any RPKI capabil-
ity on the part of the peers. These peers perceive the SDX
fabric as a Layer-2 switch plus a route server.

While this prototype has limitations (see following), and
vendor support for RPKI does exist in conventional “non-
SDN” form [11] the CARDIGAN deployment shows that in
principle, any number of BGP peers could connect to such
an exchange and have such filtering applied without requir-
ing RPKI support on their own behalf. This enables RPKI
relying party functionality be delivered to edge routers that
have no native RPKI support. This will help circumvent the
scaling and administrative overhead of introducing RPKI
validation on all peering routers.

2. METHODOLOGY
CARDIGAN is a two-switch, distributed router deploy-

ment based on the VANDERVECKEN [12] (which is in turn
based on RouteFlow [13]) software stack. Figure 1 shows
the two OpenFlow switches which are deployed in di↵erent
physical locations. Together with the controller, these ele-
ments appear to external networks as a single Layer-3 device
with one routing table. The switches handle the majority
of tra�c forwarding in hardware, with certain control plane
tra�c (including ICMP, ARP, neighbor discovery, and BGP)
redirected to the controller, being tunnelled over OpenFlow.
The controller calculates the FIB from the RIB and dis-
tributes the FIB, in the form of OpenFlow flow rules, to
the switches in real time. The controller has configuration
associating interconnected ports on the switches, and asso-
ciating ports on the switches with virtual interfaces on the
controller.

The CARDIGAN SDN controller is a Linux (Ubuntu) PC

Kernel
RIB

ROA/CA
CACHE

BGP DB

Global
ROA/CH

OpenFlow
FIB

RF
client

RF server
RF proxy

BGP
route-
map

BGP
updates

Quagga+rtrlib

Controller Container
Controller Host Switch

Open
FlowRPCNetlinkNetlink

Routes Flows Default
Deny

Figure 2: Translating routes to OpenFlow flows

which hosts a container within which Quagga runs. The con-
tainer provides namespace isolation from the host operating
system. This is necessary to keep Quagga’s routing table
(managing the FIB) separate from the host’s (managing the
control plane connection to the OpenFlow switches). Since
virtual interfaces inside the container are associated with
physical interfaces on the switches, processes like Quagga
are able to run inside the container and make changes to
the RIB without knowing anything about the data plane
implementation.

WIX peers and REANNZ routers peer with CARDIGAN’s
controller using BGP. Previous to this RPKI deployment
the BGP protocol stack was provided by the stock Quagga
release included with Ubuntu 12.0.4. Now, BGP packets
which enter CARDIGAN’s data path are delivered to the
Quagga process, a normal BGP peering session is established
and routes exchanged. Each route to enter the controller’s
routing table is then translated by RouteFlow into Open-
Flow flows. ARP and neighbor discovery are used to resolve
nexthops. The flows are then propagated to the switches
thus implementing a distributed FIB, which has a default
deny policy - flows are proactively programmed as routing
announcements are processed, and packets for prefixes not
specifically known are dropped.

The API to the distributed FIB is e↵ectively the CARDI-
GAN controller’s kernel routing table running within the
container. The interaction between the di↵erent elements is
shown in Figure 2.

An example of a route to flow transformation is shown
in Figures 3, 4 and 5. In this example a route for the
60.234.0.0/16 subnet has been learned with a BGP next hop
of 202.7.0.144 (a peer on the WIX exchange), installed in the
container’s kernel table and translated into two OpenFlow
rules.

cookie=0x0, duration=623810.66s,

table=0,

n_packets=69883,

n_bytes=6988385,

priority=16560,

ip,in_port=1,

dl_dst=12:a1:a1:a1:a3:02,

nw_dst=60.234.0.0/16

actions=set_field:00:50:56:8a:97:18->eth_src,

set_field:00:12:1e:00:3c:01->eth_dst,

output:2

Figure 4: Example of a flow in the switch facing the
WIX

Cristel Pelsser

Destination Gateway Mask Flags MSS Window irtt Iface

60.234.0.0 202.7.0.144 255.255.0.0 UG 0 0 0 eth4

Figure 3: Example of a route in the kernel routing table of the container

cookie=0x0, duration=618876.366s,

table=0,

n_packets=0,

n_bytes=0,

priority=16560,

ip,

in_port=46,

dl_dst=12:a1:a1:a1:a3:03,

nw_dst=60.234.0.0/16

actions=set_field:12:a1:a1:a1:a3:01->eth_src,

set_field:12:a1:a1:a1:a3:02->eth_dst,

output:48

Figure 5: Example of a flow in the switch facing
REANNZ

Routes such as this one and ARP entries entering and
leaving the container’s routing and ARP table are noticed
via the kernel’s netlink interface by RouteFlow’s rfclient pro-
cess (running in the container), which notifies the RFserver
and RFproxy components running on the controller host it-
self. A simple bridge between a dedicated interface within
the container and another on the host provides the necessary
IP connectivity between container and host.

rfclient translates routes to match/action OpenFlow-style
rules, and initiates neighbor discovery to resolve nexthops
(by stimulating ARP if necessary). These rules are then sent
via RPC to RFserver. RFserver which is running on the host
combines this knowledge with configuration of switch ports,
and sends the rules to RFproxy. RFproxy then translate the
rules into OpenFlow flows, via an OpenFlow connection to
the appropriate switch. Routes are withdrawn in a similar
way - rfclient commands the removal of rules that match a
route to be removed.

The flow in Figure 4 is installed on the switch facing the
WIX, as that is where the route’s next hop is connected.
There is a reciprocal flow, shown in Figure 5, on the other
OpenFlow switch so that tra�c received from REANNZ can
be forwarded to the switch facing the WIX. CARDIGAN
uses MAC addresses beginning with octet 12 to denote in-
terfaces that are internal to the distributed fabric, and to
enable flow rules to distinguish between hosts on the same
local switch and those on a remote switch. These MAC
addresses are part of CARDIGAN’s configuration.

The flow in Figure 4 has the following match conditions:

• The packet protocol type must be ’IP’

• The ingress port must be port ’1’

• The datalink layer (dl) destination address, also known
as the destination Ethernet MAC address must be
12:a1:a1:a1:a3:02

• The network layer destination address, also known as
the destination IP address must be within the
60.234.0.0/16 subnet

If these are met then the following actions are taken:

• The Ethernet source MAC address is set to
00:50:56:8a:97:18

• The Ethernet destination MAC address is set to
00:12:1e:00:3c:01

• The packet is forwarded out port ’2’

Once the flow rules have been installed into the switches,
all subsequent packets with destinations matching the sub-
net 60.234.0.0/16 will be switched in hardware to the nex-
thop advertised within the peers’ BGP session.

There is a 1:1 relationship between OpenFlow flows and
the routes with which they are associated. There are also a
small number of flows to handle tra�c to directly connected
hosts and to divert control tra�c to the CARDIGAN con-
troller. There are for example specific rules used to direct
BGP protocol (TCP port 179) tra�c to the controller so
that BGP peering sessions can be established, and to allow
ARP packets to be passed to the controller so that nexthops
can be resolved.

As previously mentioned, a key feature of the route to
forwarding table implementation is that the hardware for-
warding plane is set to deny all tra�c by default. There-
fore, because flows are always proactively programmed, if a
peer sends tra�c to a destination that the controller has not
learned via BGP, the packets will be discarded in hardware
on the ingress port. This feature alone serves to solve many
of the common security problems often found on Internet
Exchanges [8].

2.1 Implementing RPKI on CARDIGAN
To support RPKI on CARDIGAN two changes were made.

The first change was to replace stock Quagga with the rtrlib
version [14] which enables Quagga to validate routes via an
RPC along with a certificate cache. The RPKI-RP cache,
implemented by rcynic, runs on the controller host. The
cache is queried by Quagga running inside the container via
an RPC, as each route is received from a peer and processed.
Being a cache, authenticity or the lack of it may be out of
date. This of course is not a limitation of the CARDIGAN
implementation in particular.

The following RPKI trust anchors were used in this de-
ployment:

ca0.rpki.net

localcert.ripe.net

repo0.rpki.net

repository.lacnic.net

rpki-pilot.lab.dtag.de

rpki-repository.nic.ad.jp

rpki-testbed.apnic.net

rpki.afrinic.net

rpki.apnic.net

rpki.ripe.net

ARIN’s trust anchor does not appear in the default config-
uration as it requires the acceptance of additional conditions
for use. It was excluded form the deployment for this reason.

[Local-Preference Route-Map in place]

route-map rpki permit 10

match rpki invalid

set local-preference 10

[Deny Route-Map in place]

route-map rpki deny 10

match rpki invalid

Figure 6: Views of the Quagga route maps that mark
or deny invalid routes

The second change is to Quagga’s configuration, which
allows Quagga to discard routes that are specifically invalid
(as opposed to being of unknown authenticity).

This was done in two steps. The first step being the route-
map in Figure 6 to tag invalid routes with a lower BGP
local-preference. This was to understand how many invalid
routes were being learned. The second step was to change
the route map to the other option shown in Figure 6 to drop
any invalid routes entirely.

[With Local-Preference Route-Map in place]

#ovs-ofctl dump-flows br0 | grep 103.23.16.0/24

cookie=0x0, duration=620497.082s, table=0,

n_packets=0, n_bytes=0, priority=16640,ip,

in_port=46,dl_dst=12:a1:a1:a1:a3:03,

nw_dst=103.23.16.0/24

actions=

set_field:12:a1:a1:a1:a3:01->eth_src,

set_field:12:a1:a1:a1:a3:02->eth_dst,output:48

[With Deny Route-Map in place]

#ovs-ofctl dump-flows br0 | grep 103.23.16.0/24

#

Figure 7: Dump of the flow rule table on the RE-
ANNZ switch showing the invalid route still in place
on the switch and then removed

Invalid routes are tagged with local preference 10, en-
abling them to be observed in the BGP (“show ip bgp”)
table as shown in Figure 8. Figure 7 shows that during this
phase there is still a corresponding flow-rule for this prefix
present on the switches which is not present after the change
in Route-Map shown in Figure 6.

3. RESULTS
While there is no question that the deployment was lim-

ited in size (see Limitations below), a number of practical
observations were made from both technical and adminis-
trative perspectives.

The CARDIGAN quagga instance has 3 BGP peers. One
of these peers is to the REANNZ network and two are to the
WIX route servers. The REANNZ peer advertises 5 prefixes
while the route servers advertise on the order of 550 routes
each (550 and 535 at the time of writing).

In terms of the volume of BGP updates processed from
the exchange, from 03/17/14 13:42:40 UTC to 03/24/14

Figure 9: BGP Updates by CARDIGAN fabric
as Advertisements and Withdrawals from 03/17/14
13:42:40 UTC to 03/24/14 01:00:06 UTC

01:00:06 UTC a total of 4173 updates were processed. These
were broken down into 2249 BGP advertisements and 1927
BGP withdrawals. A day by day breakdown can be seen in
Figure 9.

The number of BGP updates varied widely across the 7
full days being measured. The minimum BGP Advertise-
ments and BGP Withdrawals were 66 and 60 respectively,
with the maximum values being 1121 and 1088. The mean
of these figures was 314.71 and 271.29 (2dp) with standard
deviations of 365.32 and 366.59 (2dp).

A total of 566 routes were learned from the WIX route
servers. Of these routes 23 contained a valid ROA while
the ROA for 19 of these routes was invalid. The remaining
routes had no ROA associated with them.

CARDIGAN successfully prevented these 19 invalid routes
from being advertised to REANNZ, and had REANNZ at-
tempted to reach those prefixes the CARDIGAN fabric would
have discarded the packets. This was the key goal.

In most of the cases investigated, we found the nineteen in-
valid routes to be invalid due to the advertised prefix length
not matching the ROA. In one case a prefix was being ad-
vertised by a party not matching the ROA at all (a legacy
deployment). In all cases this represented a connectivity loss
to those prefixes from REANNZ, though REANNZ users did
not report this loss as a problem.

Operationally it was possible to use OpenFlow flow coun-
ters, to measure tra�c to each prefix. We observed that
switch1 received 18.81 GB of tra�c from REANNZ while
switch2 received 20.18 GB from the WIX from March 17,
2014 to March 24, 2014. Figure 10 shows the percentage of
this tra�c per flow rule (essentially an IP destination pre-
fix). In our case, a single entry is used to forward most
of the tra�c. This is true for both switches: 89.31% of
the tra�c for the switch facing REANNZ and 83.22% for
the switch facing WIX. Switch1 only drops 959 bytes while
switch2 drops 42.60 KB of tra�c over a period of a week.
These counters made analysis of the consequences of route
filtering very easy - it could make an informed prediction
about the impact of dropping a flow for an invalid prefix
based on historical tra�c.

There were a number of administrative issues noted. For
example, it was observed that APNIC does not allow ROAs
to be asserted within their trust anchor by organisations
without full APNIC member status. This has the e↵ect of

I* 103.23.16.0/24 202.7.0.222 10 0 9439 132040 i

I*> 202.7.0.221 10 0 9439 132040 i

I* 103.23.17.0/24 202.7.0.222 10 0 9439 132040 i

I*> 202.7.0.221 10 0 9439 132040 i

Figure 8: Output of the “show ip bgp” command. Invalid routes are tagged with a local preference 10.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700

Tr
af

fic
 C

D
F

(%
)

Flow

facing REANNZ facing WIX

Figure 10: Normalized cumulative ditribution of the
tra�c on the two switches

excluding a number of Asia Pacific based organisations with
legacy or historical addresses who are APNIC members of
lesser classes. This particular policy is not uniform across
all the RIRs. This question is under current discussion.

4. LIMITATIONS
There are a number of limitations in the CARDIGAN

testbed which are primarily specific to the CARDIGAN switch
hardware itself - Pica8 3290 and 3780 switches - and to the
experimental nature of the entire software stack.

At present these switches allow only TCAM (as opposed
to FIB) resources to be programmed with OpenFlow, which
puts a limit (1k to 2k) flows total. The current Pica8 soft-
ware (2.1) also does not support IPv6, though the upcoming
2.2 software does.

To address this flow scaling limitation FIB compression
techniques like route summarization (maintaining correct
forwarding behavior while reducing the number of rules,
as demonstrated in a separate experiment by the FRONT
LINE ASSEMBLY project [15]) could be used. A 40% com-
pression of the FIB was reached between ESnet and RE-
ANNZ, two New Zealand national internet service providers.

Future generations of OpenFlow hardware support more
flows and multiple tables - NoviFlow’s NPU-based switches
are an example. Also, as OpenFlow implementations mature
on existing hardware it is expected non-TCAM resources
will be available for flow matching. An example is host
MAC address matching hardware which is commonly used to
match a given destination MAC address specifically. While
OpenFlow 1.3 was used in this deployment, the switches pro-
vided only a single table. This precluded experimentation
with structuring flow tables as trees or pipelines rather than
a single TCAM-based table.

The prototype’s RIB to FIB convergence time is slow -

measured at 10 to 20ms per flow added or removed. There
are a number of CARDIGAN implementation specific rea-
sons for this - including routes passing through multiple
python processes with extensive string handling. The flow
modification performance of the Pica8 switches also has not
been measured independently. A faster implementation would
likely not involve python.

Today, control tra�c is forwarded to the control container
over an OpenFlow connection. I.e. ARP, BGP etc. must be
passed from the data plane to the switch’s CPU, encapsu-
lated in OpenFlow, sent to the controller, and then decap-
sulated. It would be better to dedicate ports in the data
plane and a controller port to control tra�c, which would
avoid the switch CPU and encapsulation.

Policy (specifically, what to do with invalid routes) is fairly
coarse grained via the route-map mechanism - while it is pos-
sible to change/suppress advertisements, more flexible mech-
anisms would be useful for wider/larger deployments. For
example, in the case of a catastrophic RIR failure or com-
promise, large numbers of advertisements could be a↵ected
or dropped. One possible solution might be to prompt for
operator intervention if an automated policy change would
cause a very large tra�c change.

5. RELATED WORK
The route server in [16] is coupled with an OpenFlow

controller that installs flows for the BGP routes into the
switches owned by the IX. [16] is the ancestor of this work.
In this work, only routes with a valid origin AS are installed
in the switches. RPKI-based routing policies are enforced.
SDX [17] also proposes a controller for Internet Exchanges.
Its focus is di↵erent in that ISPs are given the possibility to
configure the exchange to implement policies on their behalf.

B4 [18] and SWAN [19] are other examples of SDN deploy-
ments in production networks. These are private WANs con-
necting Google’s and Microsoft’s data centers, respectively.
The tra�c demand is mostly known a priori, making it suit-
able for a controller to pre-configure various number of paths
between pairs of DCs depending on the expected load.

Not many techniques are currently available to enforce
congruence between the data and routing planes. Among
these, RPF-check (Reverse Path Forwarding check) [20] al-
low verification that packets with a given IP source can be
expected on a particular interface or at the router by check-
ing if there is a route for the source in the table. This mech-
anism provides some protection against IP spoofing. Here,
the protection provided di↵ers. First, packets to destina-
tions not advertised by the IX member are not forwarded
to the members’ infrastructure. This is a destination-based
congruence check. Second, BGP routes of invalid origin are
discarded.

6. CONCLUSION
Enforcing control plane policy consistently and scalably

in the data plane, whether at the routing level or the MAC
level has been challenging. It is possible to address enforce-
ment and authenticity problems in and at di↵erent layers
(for example, using MACSEC to help authenticate a peer).
However until the advent of OpenFlow in particular the data
plane was not generically nor directly programmable - this
programmability represents an opportunity to apply policy
directly to the data plane.

As discussed in the limitations section, scalability chal-
lenges remain - OpenFlow implementations are still rela-
tively primitive and incomplete, and lower end hardware
does not provide the necessary flow matching resources for
more than a few thousand proactively programmed flows.
However higher end OpenFlow hardware (Eg, NoviFlow 200)
supports many hundreds of thousands of flows and it can be
imagined more hardware with even more capabilities will
become available in the future.

This deployment also suggests a method to support RPKI
in an environment with non-SDN peers - the peers do not
need to support RPKI to gain the benefits of the exchange
fabric’s capabilities. Further exploration and leverage of
this proxy programmability/capability will continue on the
CARDIGAN platform.

Acknowledgment
The authors would like to thank Stephen Stuart for his in-
sight on the project.

7. REFERENCES
[1] G. Huston, R. Loomans, and G. Michaelson, “A

Profile for Resource Certificate Repository Structure,”
RFC 6481 (Proposed Standard), Internet Engineering
Task Force, Feb. 2012.

[2] R. Bush and R. Austein, “The Resource Public Key
Infrastructure (RPKI) to Router Protocol,” RFC 6810
(Proposed Standard), Internet Engineering Task
Force, Jan. 2013.

[3] P. Mohapatra, J. Scudder, D. Ward et al., “BGP
Prefix Origin Validation,” RFC 6811 (Proposed
Standard), Internet Engineering Task Force, Jan.
2013.

[4] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway
Protocol 4 (BGP-4),” RFC 4271 (Draft Standard),
Internet Engineering Task Force, Jan. 2006, updated
by RFCs 6286, 6608, 6793.

[5] A. He↵ernan, “Protection of BGP Sessions via the
TCP MD5 Signature Option,” RFC 2385 (Proposed
Standard), Internet Engineering Task Force, Aug.
1998, obsoleted by RFC 5925, updated by RFC 6691.

[6] (2008, March) Youtube hijacking: A RIPE NCC RIS
case study. [Online]. Available: http://www.ripe.net/
internet-coordination/news/industry-developments/
youtube-hijacking-a-ripe-ncc-ris-case-study

[7] (2014) RIR statistics exchange format. [Online].
Available: https://www.apnic.net/publications/
media-library/documents/resource-guidelines/
rir-statistics-exchange-format

[8] M. Jager. (2012) Securing IXP connectivity.
[9] D. Pemberton. NZ scores first OpenFlow controlled

connection to an IX. [Online]. Available:
http://list.waikato.ac.nz/pipermail/nznog/
2012-December/019635.html

[10] Quagga project. [Online]. Available:
http://www.nongnu.org/quagga/

[11] (2011, December) RPKI: Router Configuration.
[Online]. Available: http:
//www.ripe.net/lir-services/resource-management/
certification/router-configuration

[12] J. Bailey. (2012, October) VANDERVECKEN: a
reference OpenFlow-controlled router/MPLS
implementation for network research. [Online].
Available: http://goo.gl/2eQskD

[13] Routeflow project. [Online]. Available:
https://sites.google.com/site/routeflow/

[14] GitHub: Quagga with RPKI-RTR prefix origin
validation support. [Online]. Available:
https://github.com/rtrlib/quagga-rtrlib

[15] J. Bailey, S. Whyte, D. Hall et al., “Front-Line
Assembly: First international BGP peering using SDN
in production between two national-scale network
providers,” Demo at Open Networking Summit 2013
(ONS 2013), April 2013. [Online]. Available:
http://homepages.ecs.vuw.ac.nz/foswiki/pub/Users/
Josh/TREEHOUSE/fla-poster.pdf

[16] J. P. Stringer, Q. Fu, C. Lorier et al., “Cardigan:
Deploying a distributed routing fabric,” in HotSDN
2013 (Poster session), August 2013.

[17] A. Gupta, M. Shahbaz, L. Vanbever et al., “SDX: A
Software Defined Internet Exchange,” Georgia
Institute of Technology, Tech. Rep. GT-CS-13-06,
November 2013.

[18] S. Jain, A. Kumar, S. Mandal et al., “B4: Experience
with a globally-deployed Software Defined WAN,” in
SIGCOMM, 2013.

[19] C.-Y. Hong, S. Kandula, R. Mahajan et al.,
“Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[20] F. Baker and P. Savola, “Ingress Filtering for
Multihomed Networks,” RFC 3704 (Best Current
Practice), Internet Engineering Task Force, March
2004.

	A15E65A9-3D15-459E-8FAD-99D481E54744:

