
Reasoning on BGP Routing Filters using Tree Automata

Caroline Battagliaa, Véronique Bruyèrea, Olivier Gauwinb, Cristel Pelsserc, Bruno Quoitina,∗

aComputer Science Dept., UMONS, Place du Parc 20, B-7000 Mons,Belgium
bUniv. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

cInternet Initiative Japan (IIJ), Innovation Institute, Tokyo, Japan

Abstract

The Border Gateway Protocol (BGP) is the protocol used to distribute Internet routes between different
organizations. BGP routing policies are very important because they enable organizations to enforce
their business relationships by controlling route redistribution and route selection. In this paper, we
investigate the semantic of BGP policies. We aim to determine whether two policies are equivalent, that
is, if given the same set of incoming routes, they will generate the same set of outgoing routes. We show
how this problem can be solved using the tree automata theory and describe several optimizations. We
also propose a prototype implementing this approach. The experimental results are very promising.
They show the efficiency of our approach and the interest of using the tree automata theory in the
context of BGP routing policies.

Keywords: BGP, routing protocols, routing policies, tree automata

1. Introduction

The Border Gateway Protocol (BGP) [RLH06]
is the protocol used to distribute Internet routes
between different organizations, also called Au-
tonomous Systems (AS). In BGP, routing policies
are very important because they enable ASes to
enforce their business relationships by controlling
route redistribution and route selection. This in
turns influences how the traffic flows in the Inter-
net. ASes are motivated to control traffic flow
as carrying traffic internally is costly and they
are billed differently by the different neighbor-
ing ASes, with whom they have a business rela-
tionship, for sending traffic through them. This
billing often relies on the amount of traffic sent
to the neighboring AS. For example, an organiza-
tion A can buy transit service from an Internet
provider. In addition, it may connect to another

∗Corresponding author. Tel.: +32 65 373448, Fax.:
+32 65 373318

Email address: bruno.quoitin@umons.ac.be
(Bruno Quoitin)

organization B for the sole purpose of exchanging
information destined to that organization. BGP
policies enable organization A to prevent traffic
between the Internet provider and its peering or-
ganization B to transit through its network. Net-
work operators may wish to implement a wide va-
riety of policies ranging from limiting the adver-
tisement of some prefixes, to preferring sending
traffic to some cheaper neighboring ASes, to in-
fluencing the route selection in distant ASes, and
to stop a DDoS attack, to name a few.

The configuration of BGP policies is complex
and often source of errors [MWA02, FB05]. The
implementation of a single policy is distributed
among filters defined on multiple routers, each
configured differently. Usually, some action takes
place at the entrance of the AS and a different set
of actions takes place at the exit of the AS. Due
to this distribution, it is not easy to build a high
level view of the BGP policies solely based on the
router configuration files. Furthermore, the con-
figuration languages provided by the router ven-
dors are very low level. Each vendor provides a

Preprint submitted to Computer Networks April 24, 2014

different syntax. Translation from one language
to another is complex as the expressiveness of the
languages varies greatly. Even using a single lan-
guage, it is possible to implement a single high
level policy in multiple ways. Several attempts
have been made at providing tools to manipu-
late or generate correct BGP policy configurations
[CGG+04, Int97, BFM+05, VH09].

In this paper, we investigate the semantic of
BGP routing filters. We aim to determine if two
BGP routing filters have the same semantic. That
is, if given the same set of incoming routes, the
two filters will generate the same set of outgoing
routes. The solution to this problem is impor-
tant as it is the first step to being able to de-
tect routing filters configuration mistakes before
committing a configuration change and thus pre-
vent unnecessary traffic disruptions. It enables
to push much further the work started by Grif-
fin et al [GJR03], Feamster et al [FB05], by Le
et al [LLW+09] and more recently by Perouli et
al [PGM+12]. Identifying if two policies have the
same effect enables network operators to check the
correctness of routing filter configurations with re-
gard to the high level policies they aim to enforce.
Additionally, such a solution is useful for refactor-
ing old BGP routing filter configurations upon a
change of network equipment, the acquisition of
another network, a configuration clean up or the
development/deployment of a configuration tool.

The first idea that comes in mind to test if
two routing policies have the same semantic is
the following one: to enumerate all the possi-
ble routes (up to a certain size) and to test if
the two given policies generate the same output
routes. In this paper we propose to rely on tree
automata theory [CDG+07], a powerful mathe-
matical tool well-known for its applications in
XML processing [Hos10], and program verifica-
tion [FGVTT04]. We model routes as trees, and
routing policies as tree automata. We use the
tree automata theory to decide whether two rout-
ing policies have the same semantics, that is, are
equivalent total functions. Therefore contrarily to
the previous algorithm which works at the level of
routes and tests route after route for the equiva-
lence of policies, we test for equivalence directly

at the level of the policies.
The paper is organized as follows. In Section 2,

we briefly describe how the BGP routing proto-
col works and how it implements routing policies
with routing filters. We then formally define the
semantics of routing filters, as total functions op-
erating on routes.

In Section 3, we explain how to model a route
as a tree. We recall the notion of tree automa-
ton, present some of their useful properties, and
illustrate with some pedagogical examples. We
then show progressively how routing filters can
be modeled as tree automata. We start with fil-
ter predicates used in routing filters to test if a
filter can be applied to a route. Such predicates
can easily and naturally be modeled by tree au-
tomata.

In Section 5, we focus on filter actions. An
action is used in a filter to generate a modified
output route from a given input route. We show
that filter actions can also be modeled with tree
automata. To this end, we show that an action
can be seen as a binary tree relation and how to
model this relation as a tree automaton. This
model is again easy and natural. We also show
that a routing filter can be modeled as a tree au-
tomaton, and that the equivalence of two filters
reduces to the equivalence of their related tree au-
tomata. Testing the equivalence of two tree au-
tomata is a classical operation in tree automata
theory.

In Section 6, we propose a prototype imple-
menting this approach. We demonstrate the
equivalence test on example Cisco IOS route-
maps then we discuss additional routing filter ver-
ifications that could be provided by our tool in the
long-term.

In Section 7, we describe multiple cases where
our approach could be applied by network opera-
tors to perform sanity checks when deploying or
updating routing filters distributed on multiple
routers. We show the benefits of reasoning at the
level of filters rather than at the level of routes.

In Section 8, we describe several experiments
we performed with the prototype implementation.
We present performance measurements as well as
a study of the algorithmic complexity. Several

2

optimizations are brought to the prototype im-
plementation to reduce its time and space com-
plexity. Those optimizations are described in Sec-
tion 9. The experimental results are very promis-
ing. They show the efficiency of our approach and
the interest of using the tree automata theory in
the context of routing filters.

2. BGP Routing Policies

The Internet is an interconnection of several
independent networks called Autonomous Sys-
tems (AS), each being uniquely identified by an
AS number (ASN). The Border Gateway Protocol
(BGP) is the de facto standard protocol used for
routing among ASes.

To compute paths across the Internet, BGP
routers need to exchange routing information.
The basic unit of routing information in BGP is
a route and its purpose is to announce the reach-
ability of a remote destination. Although BGP
can be used to advertise the reachability of sev-
eral kinds of address families [BRCK00], in this
paper we focus on IPv4 addresses. For this ad-
dress family, destinations are announced in the
prefix form. An IP prefix, expressed as a couple
(address / prefix length) represents a set of con-
tiguous IP addresses that share a common prefix.
An example is 192.168.128.0/17 which repre-
sents the set of addresses that share their 17 most
significant bits with 192.168.128.0. In a route,
we call DST_PREFIX the attribute that contains the
destination prefix.

A BGP route associates a destination prefix
DST_PREFIX with several path attributes. The
most important path attributes are described in
the following paragraphs.

• AS_PATH: records the ASNs of the ASes tra-
versed by the route, ordered from the clos-
est to the nearest. The AS_PATH attribute is
used for loop detection as well as for ranking
routes.

• LOCAL_PREF: used to give a route a prefer-
ence that has a meaning local to the AS. The
LOCAL_PREF attribute has a default value in

every network. In the remaining of this pa-
per, this default value is assumed to be 100.

• NEXT_HOP: identifies the router to which
packets must be sent in order to follow this
route.

• MULTI_EXIT_DISC (or MED): used by a neigh-
bor AS to suggest which route should be pre-
ferred.

• COMMUNITIES [CTL96] : used to tag the
route as being part of a group of routes that
must undergo the same treatment. Each tag,
named a community value, has a semantic
that is usually local to an AS or to an AS
and its direct neighbors. Some community
values are defined with a global semantic by
the standard.

Each attribute has a specific type which man-
dates how the attribute values are encoded in a
route. The type of the above attributes are listed
in Table 1.

Other attributes are defined by the BGP stan-
dard. We do not list them in Table 1 as they
cannot be used in routing filters. Those at-
tributes are ORIGINATOR_ID, CLUSTER_LIST used
in conjunction with route-reflectors [BCC06],
ATOMIC_AGGREGATE and AGGREGATOR used for
route aggregation purposes. Moreover, the def-
inition of sets (AS_SET) in the AS_PATH is also
ignored as it is being deprecated by the IETF
[KS11]. The attributes listed in this paragraph
are ignored in the remaining of this paper. How-
ever, should those attribute appear in routing fil-
ters in the future, our model could easily be ex-
tended to support them.

2.1. Routing Filters
An essential feature of the BGP protocol is the

ability for any router to filter routes received from
or sent to neighbors. To filter a route has two
different meanings: it can mean either to reject
the route or to accept it after its attributes have
possibly been modified. Filtering routes has sev-
eral applications [CR05] from enforcing routing
policies (rejecting routes that do not agree with

3

Attribute Type
DST_PREFIX Sequence of up to 32 bits

(IPv4)
AS_PATH Sequence of 16-/32-bits

unsigned integers
LOCAL_PREF Unsigned integer (32-bits)
NEXT_HOP IPv4 address
MULTI_EXIT_DISC Unsigned integer (32 bits)
COMMUNITIES Set of 32-bits unsigned in-

tegers

Table 1: Type of BGP path attributes.

business relationships among domains) to traffic
engineering (influence how BGP selects the best
route towards a specific destination by changing
the route’s attributes).

Routing filters in BGP are defined on every sin-
gle router on a per-session basis. That means that
a router can act differently on a route towards
the same destination but received from or sent
to different neighbors. Routing filters are usually
defined by the network operator using the equip-
ment’s configuration language. This language is
vendor specific; the BGP specification [RLH06]
does not specify routing filters. The two most
known configuration languages are used on the
routing platforms from Cisco Systems and Ju-
niper Networks, but other vendors provide their
own language as well.

Generally speaking, a routing filter can be de-
scribed using the following formalism. A rout-
ing filter F is composed of a sequence of n rules
(R1, . . . , Rn) that are applied one after the other.
Each rule R = 〈P,A〉 is composed of two parts: a
predicate P and an action A. The predicate de-
termines if the action applies to a route or not.
A predicate is a Boolean combination of atomic
predicates where each tests a single attribute of
the route. The action is a sequence of atomic ac-
tions where each modifies a single attribute of the
route. The action is applied to the route when the
predicate matches the route.

An atomic predicate tests a single path at-
tribute. Table 2 shows the most common atomic

predicates. Note that configuration languages al-
low the expression of more complex predicates
such as regular expressions on AS_PATH or the def-
inition of sets of community values using regular
expressions. These predicates are syntactic sug-
ars for more complex combinations of the above
atomic predicates.

An atomic action modifies a single path at-
tribute. Table 3 shows the most common atomic
actions. Special actions can be used in a filter
to accept or reject a route. When such action is
used, the filter processing stops and the remaining
filter rules are not applied.

Algorithm 1 summarizes how a filter is applied
to a route. The algorithm returns a modified
version of the route and a mode that indicates
if the route was accepted (acc) or rejected (rej)
by the filter. The algorithm applies each rule in
sequence. For each rule, the algorithm tests if
the predicate matches or not. If the predicate
matches, the algorithm applies the atomic actions
in sequence. Each action modifies the route. If
special accept() or reject() action is encountered,
the algorithm finishes immediately and the cur-
rent version of the modified route, along with the
route’s mode are returned.

Algorithm 1 Applies a filter to a route
mod_route← route
for all rule in rules(filter) do
if predicate(rule)(mod_route) then
for all action in actions(rule) do
if action = accept then
return (mod_route, acc)

else if action = reject then
return (mod_route, rej)

else
mod_route← action(mod_route)

end if
end for

end if
end for
return (mod_route, acc)

We show in Figure 1 a short BGP routing filter
expressed in the syntax of Cisco IOS along with an

4

Name Predicate Description
Community membership comm_in(x) True iff the community value x belongs to the

COMMUNITIES attribute.
Path membership path_in(x) True iff the ASN x belongs to the AS_PATH attribute.
Path origin path_ori(x) True iff the ASN x appears at the last position in the

AS_PATH. The last ASN in the AS_PATH identifies the
AS which originated the route.

Path neighbor path_nei(x) True iff the ASN x appears at the first position in the
AS_PATH. The first ASN in the AS_PATH identifies the
neighbor AS from which the route was received.

Path subsequence path_sub(s) True iff the sequence of ASNs, s, is included as is in
the AS_PATH attribute.

Next-hop equality nh_is(x) True iff the NEXT_HOP equals the IP address x.
Next-hop inclusion nh_in(x) True iff the NEXT_HOP is included in the IP prefix x.
Destination equality dst_is(x) True iff DST_PREFIX is equal to the IP prefix x.
Destination inclusion dst_in(x) True iff DST_PREFIX is included into the IP prefix x.

Table 2: List of the most common atomic predicates.

Name Action Description
Absolute preference pref_set(x) Set LOCAL_PREF value to x.
Relative preference pref_add(x) Add x to the LOCAL_PREF value. If the new value

is larger than 232−1, the LOCAL_PREF value is set
to 232 − 1.

pref_sub(x) Subtract x from the LOCAL_PREF value. If the
new value is smaller than 0, the LOCAL_PREF
value is set to 0 .

Path prepending path_prepend(x) Add the ASN x at the beginning of the AS_PATH.
Community membership comm_add(x) Add a community value x to the COMMUNITIES. If

x is already part of the COMMUNITIES, this action
has no effect.

comm_remove(x) Remove a community value x from the
COMMUNITIES. If the community value x is not
part of the COMMUNITIES, this action has no ef-
fect.

comm_clear() Empty the COMMUNITIES.
Next-hop update nh_set(x) Set NEXT_HOP value to IP address x.
Absolute MED med_set(x) Set the MULTI_EXIT_DISC value to value x.
Acceptance accept() Accept the route.
Rejection reject() Reject the route.

Table 3: List of the most common atomic actions.

5

example Java code that expresses the same filter
in our prototype tool.

2.2. Problem Statement

The main objective of this paper is to provide
a test for the equivalence of two routing filters.

Let R be the set of possible routes. A routing
filter F as defined in Section 2.1 can be seen as a
total function associating with each route r ∈ R
another route r′ ∈ R, together with a mode in
{acc, rej} that indicates if the route is accepted or
rejected by the filter.

Equivalence. Two routing filters F1 and F2 are
equivalent if and only if, for all routes, their re-
sults are equal, i.e. F1 ≡ F2 iff F1 and F2 define
the same function. Two routes are equal if all
their attributes are equal.

The above definition of the equivalence of rout-
ing filters leads to a straightforward, naive test
algorithm: enumerate all routes in R, apply the
filters to each route and compare the results. If no
route was found for which the filters have different
results, then the test succeeds. Otherwise, a coun-
terexample is found and the test fails. The com-
plexity of this algorithm mainly depends on the
size of R. Testing the equivalence of routing fil-
ters with the above naive algorithm is clearly not
practical. We provide a comparison between our
approach and the naive algorithm in Section 8.2.

In this paper, we aim at providing a novel
method for testing the equivalence directly at the
level of filters rather than at the level of routes.
To achieve this objective, we model

1. routes with trees. A tree is just a mean of
encoding the values of all the attributes of a
route.

2. predicates with tree automata. A tree
automaton that models a predicate recog-
nizes only the trees corresponding to routes
satisfying the predicate.

3. actions/filters with tree relation au-
tomata. Actions and filters are binary rela-
tions that map a route to its image. Hence,
we model actions and filters with automata
that recognize a binary tree relation, that is

a set of pairs of trees (a tree and its image by
the relation).

The equivalence of routing filters can there-
fore be reduced to testing the equivalence of au-
tomata, a standard operation in Automata The-
ory [HU79].

It is important to note that with the proposed
automata approach, a routing filter is modeled by
an automaton as a relation (that maps routes to
routes), and routing filters are tested to be equiv-
alent via relations encoded as automata. The pro-
posed test is thus not done at the level of routes
but rather at the level of relations.

Other Problems. Let us mention some other re-
lated problems. When two routing filters F1 and
F2 have been declared as not being equivalent,
we could be interested to have a witness of non-
equivalence, that is, a route leading to two differ-
ent results by F1 and F2. More generally, it could
be interesting to know the set of all (instead of
one) witnesses of non-equivalence of two filters.

Another interesting problem is to be able to
test whether or not a subset of routes satisfying
a given property (for instance, routes including
community 1) is transformed by a filter into a
subset of routes satisfying another property (for
instance, routes with local-pref value 150).

We will see in this paper that these problems
can also been solved using Automata Theory, fol-
lowing the same approach as for the equivalence
test of two filters.

3. Tree Automata

In this section, we provide the tree automata
background required to fully understand the pa-
per. We first explain what is a tree and how it
can be used to encode a complex structure. Sec-
ond, we recall the notion of tree automaton and
illustrate it with examples. We also make a par-
allel between tree automata and more classical
word automata. Third, we introduce two tree
automata properties that are important for our
model, namely determinism and completion. We
illustrate these properties with examples. Finally,
we explain Boolean operations on tree automata.

6

� �
ip as−path access− l i s t 1 permit _10_
ip as−path access− l i s t 2 deny _10_
ip community− l i s t 1 permit 20

route−map RM1 permit 10
match as−path 1
s e t community 20 add i t i v e
s e t l o c a l−p r e f e r en c e 200

route−map RM2 permit 20
match as−path 2
match community 1
s e t community none� �

� �
List<IF i l t e rRu l e > ru l e s = new ArrayList<Fi l t e rRu l e >() ;

f ina l IP r ed i ca t e inPath = new PathIn (1 0) ;
f ina l List<IAction> ac t i on s1 = new ArrayList<IAction >() ;
a c t i on s1 . add (new ComAdd(2 0)) ;
a c t i on s1 . add (new Accept ()) ;
r u l e s . add (new F i l t e rRu l e (inPath , a c t i on s1)) ;

f ina l IP r ed i ca t e notInPath = new PredicateNot (inPath) ;
f ina l IP r ed i ca t e inComm = new CommIn(2 0) ;
f ina l List<IAction> ac t i on s2 = new ArrayList<IAction >() ;
a c t i on s2 . add (new ClearCommunities ()) ;
a c t i on s2 . add (new Accept ()) ;
r u l e s . add (new F i l t e rRu l e (new PredicateAnd (notInPath , inComm) ,

a c t i on s2)) ;

f ina l List<IAction> ac t i on s3 = new ArrayList<IAction >() ;
a c t i on s3 . add (new Reject ()) ;
r u l e s . add (new F i l t e rRu l e (null , a c t i on s3)) ;

F i l t e r myFi lter = new F i l t e r (r u l e s) ;� �
Figure 1: Cisco IOS route-map and Java code for constructing the corresponding filter.

Those operations are required to model Boolean
operations on filter predicates. These operations
are also at the heart of the classical automata
equivalence test.

3.1. Trees

We consider ranked trees, i.e. trees where the
number of children of a node is fixed by its la-
bel. Ranked trees are useful for encoding com-
plex, structured data such as a route composed of
multiple attributes.

Let alphabet Σ be the finite set of labels that
can appear in a tree. Let also ar be a function
mapping each label a ∈ Σ to a positive integer
ar(a) called its arity. The value ar(a) gives the
number of children of a node with label a. For
convenience, we write Σn for the set of labels of
arity n: Σn = {a ∈ Σ | ar(a) = n}. A node
labeled by a ∈ Σ is called an a-node.

We note a(t1, . . . , tn) the tree rooted at a with
n subtrees t1 to tn. The set TΣ of trees over Σ is
the least set containing all finite trees a(t1, . . . , tn)
where a ∈ Σn and ti ∈ TΣ for all 1 ≤ i ≤ n.
Note that children of a node are ordered. A tree
language is a subset of TΣ.

Let us illustrate these definitions. Consider the
alphabet Σabcd = {a, b, c, d} where ar(a) = ar(b) =
2, ar(c) = 1 and ar(d) = 0. In other words,
Σabcd

2 = {a, b}, Σabcd
1 = {c} and Σabcd

0 = {d}.

The tree a(d) does not belong to TΣabcd , because
ar(a) = 2, so the root node should have two chil-
dren. The tree t = b(a(d, c(a(d, d))), d) belongs to
TΣabcd . It is depicted in Figure 2.

b

a

d c

a

d d

d

Figure 2: A tree t ∈ TΣabcd .

3.2. Tree Automata
In this section, we recall the notion of tree au-

tomaton and illustrate it with the previous exam-
ple of alphabet Σabcd. The role of a tree automa-
ton is to recognize trees with a given structure.

Tree Automaton. A tree automaton A over Σ is a
tuple (Q,F,Σ, δ) where Q is a finite set of states,
F ⊆ Q is a set of final states, and δ is a set of
transitions of the form (q1, . . . , qn)

a−→ q with a ∈
Σn and q, q1, . . . , qn ∈ Q. The number of states is
denoted by |Q| and the number of transitions by
|δ|. The size |A| of A is equal to |Q|.

7

Run. A run of a tree automaton A on a tree t is
a function ρ mapping a state of A to each node of
t, such that for every node π of t, if π is labeled
by a ∈ Σn, then (ρ(π1), . . . , ρ(πn))

a−→ ρ(π) ∈ δ
where πi is the ith child of node π.

Intuitively, a tree automaton operates in a
bottom-up manner on a tree: it assigns a state
to each leaf, and then to each internal node, ac-
cording to the states assigned to its children. A
run ρ is accepting if the root π of the tree is as-
signed to a final state, i.e. ρ(π) ∈ F . A tree
t ∈ TΣ is accepted by the tree automaton A if
there is an accepting run among all runs of A on
this tree.

Recognizable Language. The language of A is the
set of trees accepted by A, and is written L(A).
We say that A recognizes L(A). A tree language
L ⊆ TΣ is recognizable if there exists a tree au-
tomaton A recognizing it.

Equivalence. Two tree automata are equivalent if
they recognize the same language.

3.3. Example

To illustrate the concept of a tree automaton,
let us take a simple example. Consider the alpha-
bet Σabc = {a, b, c}. The arity function is defined
as ar(a) = ar(b) = 2, ar(c) = 0.

Suppose we want to build an automaton that
recognizes the language Lac composed of trees
over the alphabet Σabc that have at least one
branch where an a-node is parent of a c-node.

We propose the tree automaton Aac =
(Q,F,Σabc, δ) with Q = {qc, qac, q⊥}. State qc is
assigned to a c-node. State qac is assigned to a
node π if and only if it belongs to a branch that
contains an a-node parent of a c-node. State q⊥
is assigned in every other case. There is a single
final state; F = {qac}. The transitions in δ are as

follows:

()
c−→ qc

(qc, qc)
b−→ q⊥ (qc, qac)

b−→ qac (qc, q⊥)
b−→ q⊥

(qac, qc)
b−→ qac (qac, qac)

b−→ qac (qac, q⊥)
b−→ qac

(q⊥, qc)
b−→ q⊥ (q⊥, qac)

b−→ qac (q⊥, q⊥)
b−→ q⊥

(qc, qc)
a−→ qac (qc, qac)

a−→ qac (qc, q⊥)
a−→ qac

(qac, qc)
a−→ qac (qac, qac)

a−→ qac (qac, q⊥)
a−→ qac

(q⊥, qc)
a−→ qac (q⊥, qac)

a−→ qac (q⊥, q⊥)
a−→ q⊥

A b-node is assigned state qac if and only if at
least one of its child nodes was assigned qac. In
every other case a b-node is assigned state q⊥.

An a-node is assigned state qac if and only if at
least one of its child nodes was assigned qac or qc.
If all child nodes are assigned q⊥, then state q⊥ is
assigned to the a-node.

Figure 3 shows a run of Aac on two different
trees. The run in Figure 3a is non-accepting as
the tree does not contain an a-node parent of a
c-node. The state assigned to the root node, q⊥ is
not a final state. The run in Figure 3b is accept-
ing. Indeed, this tree belongs to the language of
the automaton, L(Aac).

a

b b

c c c c

q⊥

q⊥ q⊥

qc qc qc qc

(a) Non-accepting run

b

c a

a c

c c

qac

qc qac

qac qc

qc qc

(b) Accepting run

Figure 3: Two runs of Aac.

3.4. Relation to Word Automata

Tree automata are related to more classical
word automata. Tree structures subsume words,
that is every word can be considered as a tree.
For example, a word a1a2 · · · an can be considered
as a tree an(an−1(. . . a1(nil))), so that a word is

8

q0 q1
c

a

b

Figure 4: Word automaton recognizing (a|b)∗c.

mapped to a branch. We consider that each word
label has arity 1 when used in the tree alphabet.
A special label nil of arity 0 is also added to the
tree alphabet. Note that the ordering of labels in
the tree is reversed compared to that of the word.
This is due to the bottom-up processing of tree
automata.

Such mapping also holds at the automata level.
A word automaton over Σ is a tuple (Q, I, F,Σ, δ),
where Q is a finite set of states, I, F ⊆ Q are sets
of initial (resp. final) states, and δ is a set of
transitions of the form q

a−→ q′. A run starts in
an initial state and applies a series of transitions
corresponding to labels of the input word. A word
is accepted if a run ends in a final state. We refer
the reader to [HU79] for more details.

It is also interesting to note that word automata
have the same expressiveness as regular expres-
sions : every regular expression can be translated
to a word automaton recognizing the same words,
and vice-versa. For instance the regular expres-
sion (a|b)∗c can be translated to the word automa-
ton in Figure 4 such that Q = {q0, q1}, q0 (resp.
q1) is the unique initial (resp. final) state, and the
transitions are q0

a−→ q0, q0
b−→ q0, and q0

c−→ q1.

3.5. Tree Automata Properties
Some operations on tree automata that are use-

ful in this paper, can be realized much more effi-
ciently when the tree automata satisfy some prop-
erties: determinism and completeness.

Determinism. A tree automaton A is determinis-
tic if it has no pair of distinct transitions with
the same left-hand side. Formally, whenever
(q1, . . . , qn)

a−→ q ∈ δ and (q1, . . . , qn)
a−→ q′ ∈ δ,

we must have q = q′.

Hence, a deterministic tree automaton has at
most one run per tree. Every tree automaton can
be determinized, i.e., one can build an equivalent
deterministic tree automaton [CDG+07]. How-
ever, the determinization procedure is exponen-
tial in time, and yields automata of exponential
size.

Completeness. Given a language L ⊆ TΣ, a tree
automaton A is L-complete if there is at least
one run of A on every t ∈ L. Therefore, if A
is deterministic and L-complete, there is exactly
one run of A on every t ∈ L.

An automaton A is complete if there is at
least one transition for every left-hand side
(q1, . . . , qn)

a−→ where ar(a) = n. If an automaton
is complete, it is also TΣ-complete.

Every tree automaton can easily be turned into
an equivalent complete automaton by adding a
(non-final) sink state q∗ and transitions going
to it (q1, . . . , qn)

a−→ q∗, for every left-hand side
(q1, . . . , qn)

a−→ missing in δ. We name this oper-
ation completion.

3.6. Example Revisited

The automaton Aac defined in Section 3.3 is
deterministic as there is a single transition for
each left-hand side. The automaton is also com-
plete as there is a transition for every possible
left-hand side. In this section, we provide a non-
deterministic automaton A′ac that recognizes the
same language Lac as Aac. Recall that Lac is the
set of trees over Σabc that have at least one branch
where an a-node is parent of a c-node.

To build such an automaton, let us first imagine
that the automaton can guess a branch of the tree
where the a-node is parent of a c-node, and then
check it. Let us call this branch β. Note that the
action of guessing the branch is a pure vision of
the mind. The automaton is really an algebraic
object and there is no reason to ask how it can
guess the branch.

A run of the automaton A′ac assigns state q⊥ to
every node that is not on β. On β, the automaton
uses states qc and qac to memorize that it has seen
respectively a c-node or an a-node above a c-node.

9

State qac is the unique final state. The transi-
tions of the automaton are as follows:

()
c−→ qc

()
c−→ q⊥

(q⊥, q⊥)
b−→ q⊥ (q⊥, qac)

b−→ qac (qac, q⊥)
b−→ qac

(q⊥, q⊥)
a−→ q⊥ (qc, q⊥)

a−→ qac (q⊥, qc)
a−→ qac

(q⊥, qac)
a−→ qac (qac, q⊥)

a−→ qac

If the automaton guessed the wrong branch,
then there is a b-node above a c-leaf which has
been assigned to qc. As no transition exists for
this case, there cannot be a corresponding run for
this guess.

Figure 5 shows an accepting run of A′ac on the
same tree as in Figure 3b. The branch β that
has been guessed by the automaton is shown with
thick lines. Every node outside the branch is
mapped to state q⊥. Note that there are two other
accepting runs of A′ac for this tree as there are two
other branches that contain an a-node parent of
a c-node.

b

c a

a c

c c

qac

q⊥ qac

qac q⊥

q⊥ qc

Figure 5: A run of A′ac.

The automaton A′ac is non-deterministic. This
can be observed from the transitions labeled with
c. There is one for the leaf in the β branch and the
other one for the leaves outside the branch. As a
consequence, if a tree has more than one branch
that satisfies the property checked by A′ac, then
there can be multiple accepting runs for this tree.
The automaton A′ac is Lac-complete as there is at
least one run for every t in Lac. However, A′ac
is not complete as there is no transition for some
left-hand sides, like for the case (qc, qc)

a−→ .

3.7. Operations on Tree Automata
Recognizable tree languages enjoy closure un-

der all standard Boolean operations. The com-
plement of a tree language T ⊆ TΣ is the tree
language TΣ \ T , i.e. the set of all trees that are
not in T . The intersection and union of two tree
languages T1, T2 ⊆ TΣ are respectively T1∩T2 and
T1 ∪ T2.
Theorem 3.1. Recognizable tree languages are
closed under complementation, intersection and
union.

In other terms, given automata A1 =
(Q1, F1,Σ, δ1) and A2 = (Q2, F2,Σ, δ2), one can
always find automata A′1, A′2 and A′3 recogniz-
ing respectively TΣ \ L(A1), L(A1) ∩ L(A2), and
L(A1) ∪ L(A2). This result is folklore [CDG+07],
we only give some insights.

Intersection and union can be obtained by com-
puting the synchronized product of two automata
A1 and A2. This construction is in time O(|δ1| ·
|δ2|) and yields automata of size O(|A1| · |A2|).
Complementation is obtained by determinizing
the automaton, completing it (so that each tree
has exactly one run on it), and then swapping its
final states with its non-final states. The comple-
mentation procedure is exponential in time and
the obtained automaton has a size exponential in
the size of the original automaton.

When the initial automata are deterministic
and complete, better complexities occur for the
complementation operation, as indicated in the
next proposition. In this proposition, we consider
the more general situation of automata that are
deterministic and L-complete. Given a tree au-
tomaton A, we use notation L(A)|L = L(A) ∩ L
to restrict the language of A to L.
Proposition 3.2. Let A1 and A2 be two au-
tomata that are deterministic and L-complete.
Then one can construct automata A′1, A′2 and
A′3 that are again deterministic and L-complete,
and such that L(A′1)|L = L \ L(A1)|L, L(A′2)|L =
L(A1)|L ∩ L(A2)|L, and L(A′3)|L = L(A1)|L ∪
L(A2)|L respectively. Moreover A′1 can be con-
structed in time O(|A1|) and with the same size
as A1, and A′2, A′3 can be constructed in time
O(|δ1| · |δ2|) and with size O(|A1| · |A2|).

10

Let us give some insights about this result. As
each given automaton Ai, i = 1, 2, is determin-
istic and L-complete, there exists a unique run
for each tree t ∈ L. This run is either accepting
or rejecting depending on whether t belongs to
L(Ai)|L or not. Therefore, an automaton A′1 such
that L(A′1)|L = L\L(A1)|L is simply obtained from
A1 by swapping its final states with its non-final
states. The resulting automaton is deterministic
and L-complete. For the intersection and union
operations, we use the synchronized product (as
mentioned above) of the automata A1 and A2 to
get automata A′2 and A′3 respectively. The an-
nounced complexities follow.

In this proposition, it is stated that the automa-
ton for the intersection and the union operations
is built in time O(|δ1| · |δ2|). In fact it can be
built in time O(|A1|k · |A2|k · |Σ|) where k is the
maximal arity of the alphabet Σ.1

Thanks to Theorem 3.1, it can be checked
whether two tree automata A1 and A2 are equiv-
alent. Indeed, it suffices to check that L(A1) ⊆
L(A2), and conversely. The former inclusion is
equivalent to L(A1) ∩ (TΣ \ L(A2)) = ∅. Empti-
ness of tree automata is decidable, so we get
[CDG+07]:

Theorem 3.3. Equivalence of tree automata is
decidable.

This test is in exponential time if automata are
non-deterministic [CDG+07], and in polynomial
time otherwise [CGLN09].

4. Modeling Routes and Predicates

4.1. Model of a Route

We recall from Section 2 that a route is com-
posed of the attributes DST_PREFIX, AS_PATH,
LOCAL_PREF, NEXT_HOP, MULTI_EXIT_DISC,
COMMUNITIES and of a status indicating if the

1 We just need to store the transitions in a data struc-
ture where transitions using a given symbol of Σ are re-
trieved in constant time. Then we loop over all symbols of
the alphabet Σ and consider pairs of transitions in δ1× δ2
using each symbol.

route is still modifiable or definitely accepted or
rejected by the routing filter.

A route can be modeled as a tree as shown in
Figure 6. This tree has a root labeled by label
route of arity 5. This node is the parent of five
branches: the first four branches model some at-
tributes and the last one models the status. It is
easy to support additional attributes in the tree
model of a route by adding new branches under
the root node.

route

0

1

1

dest

50

10

20

30

path

100

pref

10

20

40

com

mod

Figure 6: Tree modeling a route.

The branches shown in Figure 6 correspond
to the next four attributes: a sequence of in-
teger values (AS_PATH), a set of integer values
(COMMUNITIES), a single integer (LOCAL_PREF)
and a bitstring (DST_PREFIX). For clarity reasons,
we choose to not present the MULTI_EXIT_DISC
and NEXT_HOP in the paper as the type and the
actions that can be applied to these attributes are
similar to that of LOCAL_PREF and DST_PREFIX
respectively.

The structure of the five branches is described
in the following paragraphs along with their spe-
cific alphabet of labels of arity 1.

• dest branch: models the destination prefix
(DST_PREFIX) written in binary, using alpha-
bet Σdest = {0, 1}. The most significant bit is
at the bottom. For example, the route mod-
eled on Figure 6 has the 192.0.0.0/3 destina-
tion prefix. The branch is ended by leaf dest.
This leaf label is required as a tree automaton
proceeds bottom-up and needs to identify on
which branch it is working.

11

• path branch: models the sequence of ASNs
(AS_PATH) such that the first ASN is at the
bottom of the branch and the last ASN is at
the top of the branch. This inverse order al-
lows an easy modeling of the action of path
prepending (see Section 5.2). The branch
uses alphabet Σpath = [0, 216−1] whose labels
represent 16-bit ASNs. The branch is ended
with leaf path.

• pref branch: models the local preference
(LOCAL_PREF). It uses a label of alphabet
Σpref = [0, 232− 1]. The branch is ended with
leaf pref.

• com branch: models the set of community
values (COMMUNITIES) as a sorted sequence
with the least number at the top of the
branch. This branch uses Σcom = [0, 232 − 1]
whose labels represent communities. The
branch is ended with leaf com.

• status branch: indicates the status of the
route: either mod (modifiable), acc (ac-
cepted), or rej (rejected).

The underlying alphabet ΣR used to describe
routes as trees is thus decomposed as follows:
ΣR5 = {route}, ΣR4 = ΣR3 = ΣR2 = ∅,
ΣR1 = Σdest ∪ Σpath ∪ Σpref ∪ Σcom, and ΣR0 =
{dest, path, pref, com,mod, acc, rej}.

Although the alphabet ΣR as defined at this
stage is quite large, in Section 9.2, we show that
only parts of the alphabets Σdest, Σpath, Σpref and
Σcom are to be considered, depending on the rout-
ing filters submitted for equivalence. This obser-
vation will be important for performance reasons.

4.2. The Language of Routes
The setR of trees modeling routes is recognized

by the following tree automatonAR with a unique
final state qf and the transitions

1. ()
dest−−→ q1, (q1)

i−→ q1, i ∈ Σdest,
2. ()

path−−→ q2, (q2)
i−→ q2, i ∈ Σpath,

3. ()
pref−−→ q3, (q3)

i−→ q′3, i ∈ Σpref ,
4. ()

com−−→ q4, (q4)
i−→ q4,i, i ∈ Σcom,

(q4,j)
i−→ q4,i, i, j ∈ Σcom with j > i,

5. ()
mod−−→ q5, ()

acc−→ q5, ()
rej−→ q5,

6. (q1, q2, q
′
3, q4,i, q5)

route−−→ qf , i ∈ Σcom,
(q1, q2, q

′
3, q4, q5)

route−−→ qf .

In this automaton, transitions 1 describe the dest
branch as any sequence of bits ended by leaf dest.
To limit its size, this automaton does not check
that the dest branch has length at most 32. We
show in Section 4.4 that this has no impact on
the filters equivalence test. Transitions 2 describe
the path branch as any sequence of labels in Σpath

ended by leaf path. Transitions 3 describe the
pref branch as one label in Σpref followed by leaf
pref. Transitions 4 describe the com branch as
an ordered sequence of labels in Σcom ended by
leaf com. The label j just read is stored in the
current state q4,j in order to be compared with
the label i read just after j, and the transition
is applied if j > i. Transitions 5 describe the
three modes, mod, acc, rej, of the route. Finally
transitions 6 are applied at the root of the tree if
the structure of each branch has been respected
(when COMMUNITIES is a non-empty set in the first
case, and when it is empty in the second case).

Notice that automaton AR is deterministic, but
non-complete. Moreover, it has a finite number of
states, as states q4,i are restricted to i ∈ Σcom. Its
number of states can be large as the number of
transitions required to check the ordering in the
com branch is quadratic in the size of the com
alphabet. If |Σcom| = n, there are n(n−1)

2
+ n + 1

transitions of type 4.

Quasi-Routes. In order to work with smaller and
simpler tree automata for atomic predicates and
atomic actions and thus for routing filters, we
consider quasi-routes instead of routes. A quasi-
route is a tree with a root labeled by route,
five branches of arbitrary length labeled by el-
ements in ΣR1 = Σdest ∪ Σpath ∪ Σpref ∪ Σcom

and ended by leaves labeled by elements in
{dest, path, pref, com,mod, acc, rej}. The deter-
ministic automaton AquasiR with one final state
qf and the following transitions exactly accepts
all quasi-routes:

1. ()
dest−−→ q0, ()

path−−→ q0, ()
pref−−→ q0, ()

com−−→ q0,
()

mod−−→ q0, ()
acc−→ q0, ()

rej−→ q0,
12

