
HAL Id: hal-02117230
https://hal.archives-ouvertes.fr/hal-02117230

Submitted on 2 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

De l’(in)utilité du temps-réel pour le calcul d’itinéraire
dans les réseaux routiers

Amine Falek, Antoine Gallais, Cristel Pelsser, Sébastien Julien, Fabrice
Theoleyre

To cite this version:
Amine Falek, Antoine Gallais, Cristel Pelsser, Sébastien Julien, Fabrice Theoleyre. De l’(in)utilité du
temps-réel pour le calcul d’itinéraire dans les réseaux routiers. Algotel 2019, Jun 2019, Saint-Laurent-
de-la-Cabrerisse, France. �hal-02117230�

https://hal.archives-ouvertes.fr/hal-02117230
https://hal.archives-ouvertes.fr


De l’(in)utilité du temps-réel pour le calcul
d’itinéraire dans les réseaux routiers
Amine Mohamed Falek1,2 Antoine Gallais2 Cristel Pelsser2

Sebastien Julien1 Fabrice Theoleyre2

1 Technology & Strategy group, 4 rue de Dublin, 67300 Schiltigheim, France
2 ICube Lab, CNRS / University of Strasbourg, Pole API, Boulevard Sebastien Brant, 67412 Illkirch Cedex, France

La planification d’itinéraire est devenue un défi majeur avec un impact significatif sur l’économie, la sécurité, et le
climat. Elle consiste à fournir à chaque utilisateur une route présentant le plus faible temps de parcours, même si les
conditions de circulation évoluent. Ainsi, une telle stratégie requiert de reconsidérer la route à prendre en continu, les
conditions évoluant. Cependant, prendre en compte ces données temps-réel présente un impact élevé sur les ressources
en calcul nécessaires. Nous quantifions donc ici le gain apporté par des données temps-réel. Nous comparons les routes
obtenues à l’aide de données statistiques, versus temps-réel. Nous fournissons également une borne inférieure du temps
de trajet, avec un algorithme qui serait capable de prédire parfaitement le futur. Nos résultats qui s’appuient sur un jeu
de données réelles montrent de façon surprenante que le temps-réel est en réalité peu utile.

Mots-clefs : planification d’itinéraire; réseau routier; temps-réel; dynamique, prédiction

1 Introduction
Road network traffic congestion is a well known worldwide cause of anger and frustration, with a growing
climatologic and economic impact. Thereby, route planning algorithms are heavily relied upon to improve
traffic conditions by computing for each user, an optimal itinerary i.e. an itinerary minimizing travel time.

In practice, road networks are dynamic: travel time is time-variant as roads may suddenly be congested
or even closed. In such conditions, computing optimal itineraries become significantly more challenging.
In this paper, we investigate the benefits of real-time traffic data for route planning.

Since congestion is time-variant, a vehicle may change its route after having left its point of attachment.
However, re-computing the best route for each crossroad is computationally expensive.

Similarly, exploiting only static travel times for each road segment allows implementing a preprocessing
approach, reducing the computational cost [H. 16].

In this paper, we propose to model each route planning strategy, from the less agnostic (static data) to the
most accurate (real-time) approach. We also propose an algorithm serving as a lower bound, able to identify
the best route, by exploiting an ideal prediction on the travel time for each road segment. We exploit a real
dataset in several cities (e.g. London, NYC) to evaluate quantitatively the gain of using real-time data.

2 Route planning strategies with static vs. real-time data
We use a dynamic directed graph GT = (V,E,WT ) to represent the road network, where v ∈ V is a vertex
representing a physical intersection of two or more road segments, ei j ∈ E a directed edge from vertex i to
j and wi j(t) ∈WT the weight assigned to ei j, as a function of time t ∈ T .

We use the term dynamic to refer to a graph whose structure remains the same (no edge deletion/insertion)
but the weights assigned to each edge change over the time period T . For each route planning strategy,
given a query, the goal is to compute a route with minimal travel time. Formally, we define a query as
q = (s,d, ts)|s,d ∈ V and ts ∈ T , where s, d and ts represent the starting point, the destination and the
departure time respectively. Likewise, a route R = {s,u, ..,w,d} is defined as an ordered list of vertices.



Amine Mohamed Falek Antoine Gallais Cristel Pelsser Sebastien Julien Fabrice Theoleyre

To solve a query, we first compute a route R using a given route planning algorithm alg, then, we compute
the actual travel time T Time[q,alg] by emulating a moving vehicle along route R. Here, are the 4 algorithms
that we use to evaluate the need for real-time data in route planning:

Static Route Planning: We assume that the system has no knowledge of current traffic conditions. Thus,
it uses the speed limit of each road segment to compute the fastest route to its destination. Such a strategy
might be used in the case of a mobile navigation system with no access to the Internet, and cannot retrieve
real-time data. We use Dijkstra’s algorithm to compute the route with the shortest travel time.

No re-Routing Route Planning: With this strategy, the system has a precise knowledge of the travel
time of each road segment in the network before leaving its departure location. The route planning deci-
sion is made only once, right before the departure. Consider a cloud-based infrastructure which adopts a
connection-less strategy. The device receives a route to follow, and no subsequent tracking is implemented.
Thus, for a given query q = (s,d, ts), we use Dijkstra’s algorithm with the graph weights wi(ts) ∈WT set at
departure time.

Continuous re-Routing Route Planning: Continuous re-routing consists of continuously using the most
up-to-date information. After a vehicle has left its departure point, the route can be updated if faster alter-
native routes exist. We use a dynamic version of Dijkstra’s algorithm taking into consideration that edge
weights are updated at regular time intervals ∆t. Given a query q = (s,d, ts), when an update occurs at time
t, we compute the edge euv where the vehicle is currently located and issue a new query q′ = (v,d, t) to
update the route from the upcoming crossroad v.

Ideal Predictions Route Planning: This algorithm is one of the contributions of the paper. Given a query
q = (s,d, ts), we achieve an ideal prediction by departing a vehicle in the past and replaying the recorded
measurements a posteriori. Thereby, all updates occurring at t > ts are known in advance. We present a
time-dependent version of Dijkstra’s algorithm where the weights WT are updated at regular intervals of
∆t. During the traversal of the graph, we evaluate the travel time T Time[euv] of an edge euv by emulating a
vehicle along euv and denote its position by P(t ≥ tu).

From the set of already processed vertices, we retrieve the triplet [u, tu, tupdate(u)] where tu is the smallest
arrival time to reach vertex u from s and tupdate(u) is the remaining time before a new update occurs when
located at vertex u. Then, for each of u’s neighboring vertices v ∈ Neighbors(u), we compute the travel
time T Time[euv] = distuv/speeduv(tu) along edge euv:

1. If T Time[euv]≤ tupdate(u) i.e. the vehicle traverses euv before an update occurs, we compute at v, the
remaining time before the next update given by tupdate(v) = tupdate(u)−T Time[euv].

2. If T Time[euv] > tupdate(u) i.e. the update occurs before reaching v, we temporarily set euv travel
time to T Time[euv] = tupdate(u) and compute the new position of the vehicle P(t = tu + tupdate(u)).
From there, we recursively compute the time required to reach vertex v by computing the remaining
distance to v and resetting the time for a new update to occur to ∆t.

Finally, we compute tv = tu+T Time[euv], push the triplet [v, tv, tupdate(v)] into the set of processed vertices
and repeat the whole process until vertex d is reached.

Proof of correctness: We must prove that the prediction-based algorithm, does indeed compute an ideal
route for a given query q = (s,d, ts) i.e a route with minimal travel time when departing vertex s at time ts.

The FIFO property, also called the non-overtaking property states that during the traversal of an edge euv,
a vehicle A leaving u at time t should always reach v before another vehicle B that departs from u at t ′ > t.
Computing shortest paths on a graph that fulfills the FIFO property is polynomially solvable [KS93] while
shown to be NP-hard otherwise [OR90]. In our implementation, when computing the travel time of an edge
euv, we do not freeze its weight at tu but rather update it during its traversal. Hence, the FIFO property is
maintained, that is, a delayed departure from vertex u would never lead to an earlier arrival at v.

Let us now use induction to prove that the algorithm does indeed, compute the shortest route for a given
query q. In figure 2, let us assume that the shortest route to each vertex within the settled set was correctly



Cologne New York London Chicago
1.0

1.5

2.0
Lo

ss 
rat

io
Algorithm

static
no re-routing
continuous re-routing

Fig. 1: Loss ratio of each routing strategy on the sim-
ulated (left) and the real (right) datasets.

Shortest route

s, ts

u

x

y
d

w
v

Se
ttl

ed

ver
tic

es

Fig. 2: Correctness of the ideal
predictions- based strategy.

identified. Supposing that the algorithm chooses to settle vertex w next, our goal is to prove that the route
R = {s, ..,u,v,w} is indeed the shortest route to vertex w:

1. the base case is satisfied as s is settled during initialization with ts = ts (departure time);

2. since w is to be settled next, then by definition T Time[R] = tv +T Time[evw]≤ tx +T Time[exy];

3. Hence, for any route R′ = {s, ..,x,y, ..,w} other than R, we know that T Time[R′] = tx +T Time[exy]+
T Time[{y, ..,w}];

4. Thus, T Time[R] < T Time[R′], proving that the algorithm is correct as tw is indeed the shortest time
to reach w from s.

3 Evaluation of the need for real-time data
Using all four route planning strategies, we first measured the distribution of travel times for a large set
of queries on both the simulated and real datasets. We only measured significant variability in travel time
among the different strategies during rush hours at (6:00-9:00) and (14:00-18:00). Hence, in all upcoming
subsections, all the experiments are solely conducted during rush hours when routing strategies yield differ-
ent results. Running all our experiments required more than 50,000 computational hours that we distributed
among the 380 nodes of our HPC.

Datasets: We first exploit a Real Travel Time Dataset, obtained via HERE’s API (https://www.
here.com/). It corresponds to actual travel times for a large collection of road segments (New York,
London, and Chicago), sampled every 1 min, and collected over 3 months.

Since a few road segments are not monitored by HERE, we also rely on the well-known Simulated
Dataset (TAPAS trace). [UTCFBO14]. It focuses on a small German City (Cologne), during a weekday
(24 hours). OpenStreetMap was used to construct the road network and SUMO to simulate traffic using a
large set of emulated vehicles.

Impact of Route Planning Strategy on Travel Time: We compare the travel time achieved by each
strategy compared with the ideal one (which provides by construction the lower bound). The loss ratio for

a query q = (s,d, ts) is defined as: L[q] =
T Time[q,alg]

T Time[q, ideal]
, where T Time[q,alg] denotes the travel time for

the query q using the algorithm alg.
By construction, the loss ratio is larger than 1.0 (Fig. 1). In the simulated dataset (Cologne), the travel

times are significantly higher compared to the real dataset. Simulation tends to exacerbate the variability,
where redirections significantly increase travel time.

The static algorithm does not exploit real-time data and provides the highest travel times. However, the
no-rerouting strategy (only using data right before the vehicle leaves its point of attachment) computes the
shortest travel time in most situations. The difference is only significant for a few queries (usually long
itineraries). Finally, the continuous re-routing strategy, which identifies the best instantaneous route at each
crossroad, provides quasi-optimal travel times: prediction seems useless here.

Finally, we measured the impact of the sampling rate, and verified that the route planning strategy can
accommodate even low rates (up to 5 min). This limits the computation cost without impacting accuracy.



Amine Mohamed Falek Antoine Gallais Cristel Pelsser Sebastien Julien Fabrice Theoleyre

s1 d1

s2 d2

s3 d3

0/1 1/1 1/1

2/3 2/3 1/2

1/1 0/1

1/20/1

1/1 1/1 1/1

0/1

0/1 1/1 1/1 0/1

total

routesdivergence ratio

diverging

routes

Diverging vertex

Route using continuous re-routing

Route using ideal prediction

0 1 2 3 4 5

a

b

c

d

e

Fig. 3: Computing the divergence ratio

(a) Cologne (simulated) (b) New York (real dataset)

Fig. 4: Diverging vertices (yellow dots) and divergence ratio
(red shade) on the simulated (a) and the real (b) datasets.

Divergence Patterns: We now try to identify the diverging vertices in the maps, i.e. where optimal and
continuous re-routing routes diverge. Intuitively, they denote the points where a re-computation should be
triggered. Additionally, we try to discover the regions in the map where traffic is typically diverged through.

For this purpose, we create a geographic regular grid. Then, we count for each cell the ratio of routes
passing through this cell while diverging (Fig. 3). Typically, the ideal (in red) and the continuous re-routing
(dashed green) routes begin to diverge in cell (a,1). Hence, we introduce a diverging vertex at that location
(yellow dot). Moreover, we measure for each cell traversed by a green route its divergence ratio. Typically,
cell (b,2) has a divergence ratio of 2/3 as only 2 routes diverge among the 3 green routes.

Figure 4 illustrates the divergence using a heat map, also identifying the diverging vertices with a di-
vergence ratio ≥ 0.5 (yellow dots). The simulations exhibit a very high number of diverging vertices, and
routes diverge uniformly in the city. On the contrary, we can identify few specific diverging locations for
all of NYC, London and Chicago in the real dataset (only NYC is shown in figure 4b). Only the road seg-
ments in red exhibit a very dynamic pattern. Hence, the continuous re-routing strategy could significantly
be improved to reduce execution time by recomputing a route only when encountering a diverging vertex.

4 Conclusion and Future Work
By knowing the actual speed for each road segment, intelligent systems guide the vehicles through the
fastest routes. However, exploiting this real-time data has a cost: the route computation has to be re-
executed continuously until the vehicle reaches the destination. Similarly, prediction-based methods may
be inaccurate and computationally expensive. In this paper, we asked whether real-time data is important
for planning routes with near-optimal travel time. We compared quantitatively the end-to-end travel times
obtained through different route planning strategies, using measured and simulated datasets. To reduce the
computational cost, we have also identified a set of diverging points in each road network.

In future work, we plan to enhance the use of real-time data. In particular, we are investigating automatic
methods to identify the most relevant instants and locations where should be re-computed.

References
[H. 16] H. Bast, et al. Algorithm engineering, chapter Route Planning in Transportation Networks, pages 19–80. 2016.

[KS93] David E Kaufman and Robert L Smith. Fastest paths in time-dependent networks for intelligent vehicle-highway
systems application. Journal of Intelligent Transportation Systems, 1(1):1–11, 1993.

[OR90] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-
length. Journal of the ACM (JACM), 37(3):607–625, 1990.

[UTCFBO14] Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore, and Jose M Barcelo-Ordinas. Generation and analysis of a
large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing, 13(5):1061–1075, 2014.


