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ABSTRACT
Understanding data plane health is essential to improving
Internet reliability and usability. For instance, detecting dis-
ruptions in peer and provider networks can identify repairable
connectivity problems. Currently this task is time consum-
ing as it involves a fair amount of manual observation, as an
operator has poor visibility beyond their network’s border.
In this paper we leverage existing public RIPE Atlas mea-
surement data to monitor and analyze network conditions;
creating no new measurements. We demonstrate a set of
complementary methods to detect network disruptions using
traceroute measurements, and to report problems in near real
time. A novel method of detecting changes in delay is used
to identify congested links, and a packet forwarding model
is employed to predict traffic paths and to identify faulty
routers and links in cases of packet loss. In addition, ag-
gregating results from each method allows us to easily mon-
itor a network and correlate related reports of significant net-
work disruptions, reducing uninteresting alarms. Our contri-
butions consist of a statistical approach to providing robust
estimation of Internet delays and the study of hundreds of
thousands link delays. We present three cases demonstrat-
ing that the proposed methods detect real disruptions and
provide valuable insights, as well as surprising findings, on
the location and impact of the identified events.

1. INTRODUCTION
The Internet’s decentralized design allows disparate

networks to cooperate and provides resilience to failure.
However, significant network disruptions inevitably de-
grade users’ connectivity. The first step to improve
reliability is to understand the health of the current
Internet. While network operators usually understand
their own network’s condition, understanding the state
of the multi-provider Internet beyond their own network
border remains a crucial but hard task. Monitoring
multiple networks’ health is difficult, and far too often
requires many manual observations. For example, net-
work operators’ group mailing lists are a common way
to signal and share knowledge about network disrup-
tions [13]. Manual network measurements, such as ping
and traceroute assist in diagnosing connectivity issues

from a few vantage points but they suffer from poor
visibility.

We investigate the potential of existing data from a
large-scale measurement platform, RIPE Atlas [5], to
systematically detect and locate network disruptions.
The widespread deployment of Atlas probes provides an
extensive view of the Internet that has proved beneficial
for postmortem reports [8, 9, 31]. Designing automated
detection tools for such large-scale platforms is chal-
lenging. The high variability of network performance
metrics, such as round trip time (RTT), is a key obsta-
cle for reliable event detection [36]. Beyond detecting
network disruptions, pinpointing their location is quite
challenging due to traffic asymmetry and packet loss.

We examine these challenges (§ 3) and propose meth-
ods to monitor the health of the vast number of net-
works probed by Atlas traceroutes. First, we devise a
method to monitor RTT from traceroute results and
report links with unusual delays (§ 4). This method
takes advantage of the wide deployment of Atlas by
monitoring links from numerous vantage points, accu-
rately measuring delay changes. Second, we explore a
packet forwarding model to learn and predict forward-
ing behavior and pinpoint faulty routers experiencing
sudden packet loss (§ 5). Finally, we present a tech-
nique to aggregate these signals per network and detect
inter-related events (§ 6). These methods are all based
on robust statistics which cope with outliers commonly
found in traceroute measurements.

The contributions of this work reside in the statis-
tical approach to monitoring Internet delays. Despite
noisy RTT measurements, the introduced delay estima-
tor infers very stable link delays and permits accurate
predictions for anomaly detection. It also enables the
monitoring of delays and forwarding patterns for hun-
dreds of thousands links. We provide our tools [4] and
report problems in near real time [2, 3] so that other
can build upon our work. Our proposal employs only
existing data hence adding no burden to the network.

To validate our methods we investigate three signifi-
cant network events in 2015 (§ 7), each demonstrating
key benefits of our techniques. The first analyzes the
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impact of a DDoS infrastructure attack. The second
shows congestion in a tier-1 ISP caused by inadvertent
rerouting of significant traffic. And the last presents
connectivity issues at an Internet Exchange due to a
technical fault.

2. DATASET
To monitor as many links in the meshy Internet as

possible, we need a vast number of vantage points col-
lecting network performance data. With its impressive
spread across the globe and almost 10,000 probes con-
stantly connected, RIPE Atlas is the best candidate.
Atlas performs, among others, two classes of repeti-
tive measurements providing an extensive collection of
traceroute data publicly available in near real time. The
first type, builtin measurements, consists of traceroutes
from all Atlas probes to instances of the 13 DNS root
servers every 30 minutes. Due to the wide distribution
of probes and the anycast DNS root server deployment,
this is actually to over 500 root server instances. The
second type, anchoring measurements, are traceroutes
to 189 collaborative servers (super probes) from about
400 normal probes every 15 minutes. All measurements
employ Paris traceroute [12] to mitigate issues raised by
load balancers and link aggregation [36].

We have analyzed the builtin and anchoring measure-
ments from May 1st to December 31st 2015, correspond-
ing to a total of 2.8 billion IPv4 traceroutes (1.2 billion
IPv6 traceroutes) from a total of 11,538 IPv4 probes
(4,307 IPv6 probes) connected within the eight studied
months.

As our study relies solely on traceroute results the
scope and terminology of this paper are constrained to
the IP layer. That is, a link refers to a pair of IP ad-
dresses rather than a physical cable.

Consequently, the proposed methods suffer from com-
mon limitations faced by traceroute data [29, 40, 28].
Traceroute visibility is limited to the IP space, hence,
changes at lower layers that are not visible at the IP
layer can be misinterpreted. For example, the RIPE
Atlas data reports MPLS information if routers support
RFC4950. But for routers not supporting RFC4950, the
reconfiguration of an MPLS tunnel is not visible with
traceroutes while being likely to impact observed delays.
The RTT values reported by traceroute include both
network delays and routers’ slow path delay [28]. There-
fore, the delay changes found using traceroute data are
not to be taken as actual delay increases experienced by
TCP/UDP traffic, though they are good for detecting
network damage.

3. CHALLENGES AND RELATED WORK
Monitoring network performance with traceroute raises

three key challenges. In this section, we present these
challenges, discuss how they were tackled in previous

(a) Round-trip to router B
(blue) and C (red).

(b) Difference of
the two round-trips
(∆PBC).

Figure 1: Example of traceroute results with dif-
ferent return paths. P is the probe initiating the
traceroute. A, B, and C are routers reported by
traceroute. D is a router on the return path,
unseen in the traceroute. Solid lines represent
the forward paths, dashed the return paths.

work, and give hints of our approach to be discussed in
detail later.
Challenge 1: Traffic asymmetry. Traceroutes are
a rich source of information for monitoring Internet de-
lay. They reveal the path to a destination and provide
RTTs for every router on this path. Each RTT value is
the sum of the time spent to reach a certain IP address
and the travel time for the corresponding reply. Due to
the asymmetry and diversity of routes [45, 53] the paths
taken by the forwarding and returning packets often dif-
fer; also traceroute is unable to reveal IP addresses on
the return path. Path asymmetry is very common; past
studies report about 90% of AS-level routes as asym-
metric [42, 16]. For these reasons one must take par-
ticular care when comparing RTT values for different
hops.

For instance, quantifying the delay between two ad-
jacent hops can be baffling. Figure 1 illustrates this
by breaking down the RTT from the probe P to router
B (blue in Fig. 1a) and the one to the following hop,
router C (red in Fig. 1a). The solid lines represent the
forward path exposed by traceroute, and the dotted the
unrevealed return path. If we want to measure the de-
lay between routers B and C using only the information
provided by traceroute (i.e. solid lines in Fig. 1), one is
tempted to compute the delay between B and C as the
difference between the RTT to B and the one to C. But
the resulting value is likely incorrect when forward and
return paths are asymmetric. Packets returning from
C are not going through B but D, a router not seen
on the forward path. If one is monitoring the differ-
ence between the two RTTs over time and identifying
an abnormality, then it is unclear if a change is due to
abnormal delay on link BC, CD, DA, or BA (Fig. 1b).

Previous studies approach this using reverse tracer-
oute techniques based on IP options to expose the re-
turn path [24, 32]. Using these techniques Luckie et
al. [28] filter out routers with different forward and re-
turn paths and characterize congestion for the remain-
ing routers. Due to the limitations of these reverse
traceroute techniques [15] and the strong asymmetry
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of Internet traffic [16], they could study only 29.9% of
the routers observed in their experiments.

Coordinated probing from both ends of the path is
another way to reveal asymmetric paths and correspond-
ing delays [17, 14]. However, coordinated probing re-
quires synchronized control on hosts located at both
ends of the path, which is difficult in practice and lim-
its the probing surface.

Tulip [30] and cing [11] bypass the traffic asymmetry
problem by measuring delays with ICMP options but
require routers to implement these options.

In Section 4.1 we review the asymmetric paths prob-
lem and propose a new approach that takes advantage of
multiple probes and path diversity to accurately mon-
itor delay fluctuations for links visited from different
vantage points.
Challenge 2: RTT variability. As packets traverse
multiple links, routers, queues, and middleboxes, they
are exposed to multiple sources of delay that result in
complex RTT dynamics. This phenomenon has been
studied since the early years of the Internet and is still
of interest as comprehensive understanding of delay is
a key step to understanding network conditions [38, 19,
43, 35]. Simply stated, monitoring delay is a delicate
task because RTT samples are contaminated by various
noise sources. In the literature, RTTs are monitored
with different goals in mind. Minimum RTT values re-
veal propagation and transmission delays but filter out
delays from transient congestion, so are commonly used
to compute geographic distance in IP geolocation sys-
tems [23, 51]. Studies focusing on queuing delays usu-
ally rely on RTT percentiles [10, 33]; there is however
no convention to choose specific quantiles. For instance,
Chandrasekaran et al. [14] define the 10th percentile as
the baseline RTT and the 90th percentile as spikes (i.e.
sudden RTT increases), in the same study they also
report results for the 5th and 95th percentiles.

We monitor the median RTT (i.e. 50th percentile)
which accounts for high delays only if they represent
the majority of the RTT samples. Section 4.2 presents
the other robust statistics we employ to analyze RTT
measurements.
Challenge 3: Packet loss. Delay is an important
but insufficient indicator to identify connectivity issues.
In worst-case scenarios networks fail to transmit pack-
ets, and the lack of samples clouds delay measurements.
Increases in delay and packet loss are not necessarily
correlated [33]. Congestion provides typical examples
where both metrics are affected [44], but routers imple-
menting active queue management (e.g. Random Early
Detection [18]) can mitigate this [28], as the routers
drop packets to avoid significant delay increase. Other
examples include bursts of lost packets on routing fail-
ure [47]. We stress that a comprehensive analysis of
network conditions must track both network delay and

packet loss.
Packet loss is sometimes overlooked by congestion de-

tection systems. For instance, Pong [17] and TSLP [28]
probe routers to monitor queuing delays, but users are
left with no guidance in the case of lost probes. Con-
sequently, studies using these techniques tend to ignore
incomplete data due to lost packets (e.g. 25% of the
dataset is disregarded in ref. [14]), and potentially miss
major events.

Detecting packet loss is of course an easy task; the key
difficulty is to locate where the packets are dropped.
Several approaches have been previously proposed to
address this. The obvious technique is to continuously
probe routers, or networks, and report packet loss or
disconnections [30, 37]. This is, however, particularly
greedy in terms of network resources, hence, difficult to
deploy for long-term measurements. Another approach
employs both passive and active monitoring techniques
to build end-to-end reference paths, passively detect
packet loss, and actively locate path changes [52]. Ap-
proaches using only passive measurements are also pos-
sible; although wide coverage requires collection of flow
statistics from many routers [21].

In Section 5 we introduce a forwarding anomaly de-
tection method that complements the proposed RTT
analysis method (§ 4). It analyzes traceroute data and
creates reference forwarding patterns for each router.
These patterns are used to locate routers that drop
packets in abnormal situations.

Further comparisons with related works are provided
in Appendix A.

4. IN-NETWORK DELAYS
We now describe our approach to detecting abnormal

delay changes in wide-area traceroute measurements.
To address the traffic asymmetry challenge we propose
monitoring a link’s delay using Atlas probes from mul-
tiple ASs (§ 4.1). Then, we use a robust detector to
identify abnormal delay changes (§ 4.2).

4.1 Differential RTT
As stated in Section 3, locating delay changes from

traceroute data is challenging because of traffic asym-
metry. We address this challenge by taking advantage of
the topographically-diverse deployment of Atlas probes.

Let’s revisit the example of Figure 1 and introduce
our notation. RTTPB stands for the round-trip-time
from the probe P to the router B. The difference be-
tween the RTT from P to the two adjacent routers, B
and C, is called differential RTT and noted ∆PBC . The
differential RTT of Figure 1b is decomposed as follows:

∆PBC = RTTPC −RTTPB (1)

= δBC + δCD + δDA − δBA (2)

= δBC + εPBC (3)
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where δBC is the delay for the link BC and εPBC is the
time difference between the two return paths.

∆PBC alone gives a poor indication of the delay of
link BC because the two components, δBC and εPBC ,
are not dissociable. Nonetheless, these two variables are
independent and controlled by different factors. The
value of δBC depends only on the states of routers B
and C, and is unrelated to the monitoring probe P . In
contrast, εPBC is intimately tied to P , the destination
for the two return paths.

Assuming that we have a pool of n probes Pi, i ∈
[1, n], all with different return paths from B and C;
then, the differential RTTs for all probes, ∆PiBC , share
the same δBC but have independent εPiBC values. The
independence of εPiBC also means that the distribution
of ∆PiBC is expected to be stable over time if δBC is
constant. In contrast, significant changes in δBC influ-
ence all differential RTT values and the distribution of
∆PiBC shifts along with the δBC changes. Monitoring
these shifts allows us to discard uncertainty from return
paths (εPiBC) and focus only on delay changes for the
observed link (δBC).

Now let’s assume the opposite scenario where B al-
ways pushes returning packets to A, the previous router
on the forwarding path (see link AB in Fig. 1). In this
case εP represents the delay between B and A; hence,
Equation 3 simplifies as:

∆PAB = δAB + δBA. (4)

Meaning the differential RTT ∆PAB stands for the de-
lays between router A and B in both directions. This
scenario is similar to the one handled by TSLP [28], and
in the case of delay changes, determining which one of
the two directions is affected requires extra measure-
ments (see [28] Section 3.4).

In both scenarios, monitoring the distribution of dif-
ferential RTTs detects delay changes between the ad-
jacent routers. Note that we are looking exclusively
at differential RTT fluctuations rather than their ab-
solute values. The absolute values of differential RTTs
can be misleading; as they include error from return
paths, they cannot account for the actual link delay. In
our experiments we observe negative differential RTTs,
∆PXY < 0, meaning that Y has a lower RTT than X
due to traffic asymmetry (see Fig. 7c and 7d).

4.2 Delay change detection
The theoretical observations of the previous section

are the fundamental mechanisms of our delay change de-
tection system. Namely, the system collects all tracer-
outes initiated in a 1-hour time bin and performs the
following five steps: (1) Compute the differential RTTs
for each link (i.e. pair of adjacent IP addresses observed
in traceroutes). (2) Links that are observed from only
a few ASs are discarded. (3) The differential RTT dis-

tributions of the remaining links are characterized with
nonparametric statistics, (4) and compared to previ-
ously computed references in order to identify abnor-
mal delay changes. (5) The references are updated with
the latest differential RTT values. The same steps are
repeated to analyze the subsequent time bins. The re-
mainder of this section details steps for handling dif-
ferential RTTs (i.e. steps 1, 3, 4, and 5). Step 2 is a
filtering process to discard links with ambiguous differ-
ential RTTs and is discussed later in Section 4.3.

4.2.1 Differential RTT computation
The first step is calculating the difference between

RTT values measured for adjacent routers. Let X and
Y be two adjacent routers observed in a traceroute initi-
ated by the probe P . The traceroute yields from one to
three values for RTTPX and RTTPY . The differential
RTT samples, ∆PXY are computed for all possible com-
binations RTTPY − RTTPX ; hence, we have from one
to nine differential RTT samples per probe. In the fol-
lowing, all differential RTTs obtained with every probe
are denoted ∆XY , or ∆ when confusion is not likely.

4.2.2 Differential RTTs characterization
This step characterizes the distributions of differen-

tial RTTs ∆XY obtained in the previous step, in or-
der to compute a normal reference and detect signif-
icant deviations from it. In practice, these anomalies
are detected using a variant of the Central Limit The-
orem (CLT). The original CLT states that, regardless
the distribution of ∆XY , its arithmetic mean is nor-
mally distributed if the number of samples is relatively
large. If the underlying process changes, in our case
the delays for X and Y , then the resulting mean values
deviate from the normal distribution and are detected
as anomalous.

Our preliminary experiments suggest that the fre-
quent outlying values found in RTT measurements greatly
affect the computed mean values; thus an impractical
number of samples is required for the CLT to hold. To
address this we replace the arithmetic mean by the me-
dian. This variant of the CLT is much more robust to
outlying values and requires less samples to converge
to the normal distribution [49]. Figure 2 depicts the
hourly median differential RTTs (black dots) obtained
for a pair of IP addresses from Cogent networks (AS174)
during two weeks in June 2015. This link is observed by
95 different probes between June 1st and June 15th. The
raw differential RTT values exhibit large fluctuations;
the standard deviation (σ = 12.2) is almost three times
larger than the average value (µ = 4.8). Despite this
variability, the median differential RTT is remarkably
steady, all values lie between 5.2 and 5.4 milliseconds
(Fig. 2). Significant fluctuations of the median would
indicate trustworthy delay changes on that link.
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Figure 3: Normality tests for the same data as
Figure 2. Q-Q plots of the median and mean
differential RTT versus a normal distribution.

We confirm that the employed CLT variant holds very
well with differential RTTs. Figure 3a compares the
quantiles of the computed medians to those of a normal
distribution. As all points are in line with the x = y
diagonal, the computed median differential RTTs fit a
normal distribution quite well. In contrast, the mean
differential RTT is not normally distributed (Fig. 3b).
By manually inspecting the raw RTT values, we found
125 outlying values (i.e. greater than µ + 3σ) that
greatly alter the mean. These outliers are isolated events
spread throughout the two weeks, and are attributed
to measurement errors. Despite the large number of
probing packets going through this link, the mean dif-
ferential RTTs are greatly altered by these few outliers.
These observations support our choice for the median
CLT variant against the original CLT.

To account for uncertainty in the computed medians,
we also calculate confidence intervals. In the case of
the median, confidence intervals are usually formulated
as a binomial calculation and are distribution free [20].
In this work we approximate this calculation with the
Wilson score [50] since it has been reported to perform
well even with a small number of samples [34]. The
Wilson score is defined as follows:

w =
1

1 + 1
nz

2

(
p+

1

2n
z2 ± z

√
1

n
p(1− p) +

1

4n2
z2

)
(5)

where n is the number of samples, the probability of

success p is set to 0.5 in the case of the median, and z
is set to 1.96 for a 95% confidence level. The Wilson
score provides two values, hereafter called wl and wu,
ranging in [0, 1]. Multiplying wl and wu by the number
of samples gives the rank of the lower and upper bound
of the confidence interval, namely l = nwl and u = nwu.

For example, let ∆(1), ...,∆(n) be the n differential
RTT values obtained for a single link, and assume these
values are ordered, i.e. ∆(1) ≤ ∆(2) ≤ ... ≤ ∆(n). Then,
for these measures the lower and upper bound of the
confidence interval are given by ∆(l) and ∆(u).

Based solely on order statistics, the Wilson score pro-
duces asymmetric confidence intervals in the case of
skewed distributions, which are common for RTT distri-
butions [19]. Further, unlike a simple confidence inter-
val based on the standard deviation, this non-parametric
technique takes advantage of order statistics to discard
undesirable outliers.

The whiskers in Figure 2 depict the confidence in-
tervals obtained for the Cogent link discussed above.
These intervals are consistent over time and show that
the median differential RTT for this link reliably falls
between 5.1 and 5.5 milliseconds. The large confidence
interval reported on June 1st illustrates an example
where RTT measures are noisier than other days; yet
we stress that the median value and confidence inter-
val are compatible with those obtained by other time
bins. The following section describes how we identify
statistically deviating differential RTTs.

4.2.3 Anomalous delays detection
A delay change results in a differential RTT distri-

bution shift; therefore a significant change in the cor-
responding median differential RTT value. Assume we
have a reference median and its corresponding 95% con-
fidence interval that represents the usual delay mea-
sured for a certain link (the calculation of such refer-
ence is addressed in § 4.2.4). To measure if the differ-
ence between an observed median and the reference is
statistically significant we examine the overlap between
their confidence intervals. If the two confidence inter-
vals are not overlapping, we conclude that there is a
statistically significant difference between the two me-
dians [41] so we report the observed median as anoma-
lous. As a rule of thumb we discard anomalies where
the difference between the two medians is lower than
1ms (in our experiments these account for 3% of the re-
ported links). Although statistically meaningful, these
small anomalies are less relevant for the study of net-
work disruption.

The deviation from the normal reference is given by
the gap between the two confidence intervals. Let ∆̄(l)

and ∆̄(u) be, respectively, the lower and upper bound of
the reference confidence interval and ∆̄(m) the reference
median. Then, the deviation from the normal reference

5



of the observed differential RTTs, ∆, is defined as:

d(∆) =



∆(l) − ∆̄(u)

∆̄(u) − ∆̄(m)
, if ∆̄(u) < ∆(l)

∆̄(l) −∆(u)

∆̄(m) − ∆̄(l)
, if ∆̄(l) > ∆(u)

0, otherwise.

(6)

This deviation represents the gap separating the two
confidence intervals and is relative to the usual uncer-
tainty measured by the reference confidence interval.
Values close to zero represent small delay changes while
large values represent important changes.

Figure 2 exhibits confidence intervals along with the
corresponding normal reference. As the reference in-
tersects with all confidence intervals, no anomaly is re-
ported for this link. The evaluation section presents
several examples of anomalies. For example, Figure 7c
depicts two confidence intervals deviating from the nor-
mal reference on November 30th.

4.2.4 Normal reference computation
In the previous section we assumed a reference dif-

ferential RTT distribution for each link. We will now
show how to compute this. The goal of the references
is to characterize the usual delays of observed links. As
median differential RTT values are normally distributed
(§ 4.2.2), the expected median value for a link is simply
obtained as the arithmetic mean of previously observed
medians for that link. Because anomalies might impair
mean values and make them irrelevant as references,
we employ exponential smoothing to estimate the me-
dians’ mean value to reduce the impact of anomalies.
Exponential smoothing also facilitates the online im-
plementation of our delay change method for near real
time analysis [4, 2]. Let mt = ∆(m) be the median dif-
ferential RTT observed for a certain link in time bin t,
and, m̄t−1 = ∆̄(m) be the reference median computed
with median differential RTTs observed in the previous
time bin, t− 1. Then the next reference median, m̄t is
defined as:

m̄t = αmt + (1− α)m̄t−1 (7)

The only parameter for the exponential smoothing, α ∈
(0, 1), controls the importance of new measures as op-
posed to the previously observed ones. In our case a
small α value is preferable as it lets us mitigate the
impact of anomalous values. The initial value of the
reference, m̄0, is quite important when α is small. We
arbitrarily set this value using the first three time bins,
namely, m̄0 = median(m1,m2,m3).

For the reference confidence interval, the lower and
upper bounds (resp. ∆̄(l) and ∆̄(u)) are computed in
the same way as the reference median (∆̄(m)) but using
the boundary values given by the Wilson score (i.e. ∆(l)

and ∆(u)).

4.3 Probe diversity
The above differential RTT analysis applies only un-

der certain conditions. Section 4.1 shows that monitor-
ing ∆XY reveals delay changes between router X and
Y only if the following hold true. (1) The link is mon-
itored by several probes and the return paths to these
probes are disparate. (2) All returning packets are also
going through the link XY but in the opposite direc-
tion. Therefore, if we have differential RTT values ∆XY

from ten probes which share the same asymmetric re-
turn path, we cannot distinguish delay changes on XY
from delay changes in the return path, so these differ-
ential RTT values cannot be used.

To filter out ambiguous differential RTTs we avoid
links monitored only by probes from the same AS (thus
more likely to share the same return path due to com-
mon inter-domain routing policies); but instead, take
advantage of the wide deployment of Atlas probes and
focus on links monitored from a variety of ASs. We
devise two criteria to control the diversity of probes
monitoring a link.

The first criterion filters out links that are monitored
by probes from less than 3 different ASs. The value 3 is
empirically set to provide conservative results and can
be lowered to increase the number of monitored links
but at the cost of result accuracy. To determine this
value we make the following hypothesis. Links where
the error added by return paths is not mitigated by
probe diversity are reported more frequently as their
differential RTTs also account for links on the return
path. For links visited by probes from at least 3 differ-
ent ASs we observe a weak positive correlation (0.24)
between the average number of reported alarms and the
number of probes monitoring a link. Meaning that links
observed by a small number of diverse probes are not
reported more than those monitored by a large num-
ber of probes, thus a small diversity of return paths is
enough to mitigate the error added by return paths.

This simple criterion allows us to avoid ambiguous
results when links are monitored from only a few ASs,
but is insufficient to control probe diversity. For in-
stance, a link XY is monitored by 100 probes located
in 5 different ASs but 90 of these probes are in the same
AS. Then, the corresponding differential RTT distribu-
tion is governed by the return path shared by these 90
probes, meaning that delay changes on this return path
are indistinguishable from delay changes on XY .

The second criterion finds links with an unbalanced
number of probes per AS. Measuring such information
dispersion is commonly addressed using normalized en-
tropy. Let A = {ai|i ∈ [1, n]} be the number of probes
for each of the n ASs monitoring a certain link, then the
entropyH(A) is defined as: H(A) = − 1

lnn

∑n
i=1 P (ai) lnP (ai).

Low entropy values, H(A) ' 0, mean that most of the
probes are concentrated in one AS, and, high entropy
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values, H(A) ' 1, indicate that probes are evenly dis-
persed among ASs. This second criterion ensures that
analyzed links feature an entropy H(A) > 0.5.

If the second criterion is not met (i.e. H(A) ≤ 0.5)
the link is not discarded. Instead, a probe from the most
represented AS (namely AS i such as ai = max(A)) is
randomly selected and discarded, thus increasing the
value of H(A). This process is repeated until H(A) >
0.5, hence the corresponding differential RTTs are rel-
evant for our analysis.

4.4 Theoretical limitations
In our experiments we conservatively set the time

bin to one hour, consequently, the shortest event we
can detect for a link monitored by three vantage points
is 33 minutes long (see Appendix B). Using measure-
ments with a high probing rate overcomes this limita-
tion, for instance, anchoring measurements can detect
events lasting only 9 minutes.

Low frequency traceroute measurements originally de-
signed for topology discovery are not suitable for our
approach. For example, the IPv4 Routed /24 Topology
Dataset from CAIDA [1] has a 48 hour cycle which is
not appropriate to monitor transient delay changes.

5. FORWARDING ANOMALIES
Latency is a good indicator of network health, but de-

ficient in certain cases. For example, if traffic is rerouted
or probing packets are lost then the lack of RTT sam-
ples impedes delay analysis. We refer to these cases
as forwarding anomalies. In this section we introduce a
method to detect forwarding anomalies, complementing
the delay analysis method presented in Section 4.

A forwarding anomaly can be legitimate, for exam-
ple rerouted traffic, but it can also highlight compelling
events such as link failures or routers dropping pack-
ets. Using traceroute data, such events appear as router
hops vanishing from our dataset. So our approach mon-
itors where packets are forwarded and constructs a sim-
ple packet forwarding model (§ 5.1). This model allows
us to predict next hop IP addresses in traceroutes, thus
detecting and identifying disappearing routers (§ 5.2).

5.1 Packet forwarding model
The proposed packet forwarding model learns the next

hops usually observed after each router from past tracer-
oute data. Because routers determine next hops based
on the packet destination IP address, we compute a dif-
ferent model for each traceroute target.

Let us consider traceroutes from all probes to a single
destination in the same time bin. For each router in
these traceroutes we record the adjacent nodes to which
packets have been forwarded. We distinguish two types
of next hop, responsive and unresponsive ones. The
responsive next hops are visible in traceroutes as they

(a) Usual forwarding
pattern.

(b) Anomalous pat-
tern.

Figure 4: Two forwarding patterns for router R.
A,B, and C are next hops identified in tracer-
outes. Z shows packet loss and next hops that
are unresponsive to traceroute.

send back ICMP messages when a packet TTL expires.
Next hops that do not send back ICMP packets to the
probes or drop packets are said to be unresponsive and
are indissociable in traceroutes.

Figure 4a illustrates the example of a router R with
two responsive hops, A and B, and unresponsive hop,
Z. The packet forwarding pattern of this router is for-
mally defined as a vector where each element represents
a next hop and the value of the element is the number
of packets transmitted to that hop. For Figure 4a the
forwarding pattern of R is FR = [10, 100, 5].

To summarize router R’s usual patterns and to up-
date this reference with new patterns, we again em-
ploy exponential smoothing. Let FR

t = {pi|i ∈ [1, n]}
be the forwarding pattern for router R at time t and
F̄R
t−1 = {p̄i|i ∈ [1, n]} be the reference computed at

time t− 1. These two vectors are sorted such as pi and
p̄i correspond to the same next hop i. If the hop i is
unseen at time t then pi = 0, similarly, if the hop i is
observed for the first time at time t then p̄i = 0. The
reference F̄R

t−1 is updated with the new pattern FR
t as

follows:

F̄R
t = αFR

t + (1− α)F̄R
t−1. (8)

As in Section 4.2.4, a small α value allows us to mitigate
the impact of anomalous values. The reference F̄R

t rep-
resents the usual forwarding pattern for router R and
is the normal reference used for the anomaly detection
method discussed in the next section. A reference F̄R

t is
valid only for a certain destination IP address. In prac-
tice we compute a different reference for each traceroute
target; thus, several references are maintained for a sin-
gle router.

5.2 Forwarding anomaly detection

5.2.1 Correlation analysis
Detecting anomalous forwarding patterns consists of

identifying patterns F that deviate from the computed
normal reference F̄ . In normal conditions we expect a
router to forward packets as they did in past observa-
tions. In other words, we expect F and F̄ to be linearly
correlated. This linear dependence is easily measurable
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as the Pearson product-moment correlation coefficient
of F and F̄ , hereafter denoted as ρF,F̄ . The values of
ρF,F̄ range in [−1, 1]. Positive values mean that the for-
warding patterns expressed by F and F̄ are compatible,
while negative values indicate opposite patterns hence
forwarding anomalies. Therefore, all patterns F with a
correlation coefficient ρF,F̄ < τ are reported as anoma-
lous. In our experiments we arbitrarily set τ = −0.25,
as the empirical distribution of ρF,F̄ features a knee
around that value. Conservative results can be obtained
with lower τ values, but higher values are best avoided
as ρ > −0.25 represents very weak anti-correlation.

5.2.2 Anomalous next hop identification
When a forwarding pattern F is reported as anoma-

lous, it means that the proportions of packets sent to
next hops are different from those observed in the past.
Further, an anomalous pattern can be caused by just
a few aberrant next hops. We devise a metric to iden-
tify hops that are responsible for forwarding pattern
changes. Let F = {pi|i ∈ [1, n]} be an anomalous
pattern and F̄ = {p̄i|i ∈ [1, n]} the computed normal
reference. Then we quantify the responsibility of the
next hop i to the pattern change as:

ri = −ρF,F̄

pi − p̄i∑n
j=1 |pj − p̄j |

. (9)

The responsibility metric ri ranges in [−1, 1]. Values
close to zero mean that the next hop i received an usual
number of packets thus it is likely not responsible for
the pattern change. On the other hand, values deviating
from 0 indicate anomalous next hops. Positive values
stand for hops that are newly observed, while negative
values represent hops with an unusually low number of
packets.

For example, assume Figure 4a depicts F̄R, the com-
puted normal reference for router R, and Figure 4b il-
lustrates FR, the latest forwarding pattern observed.
The correlation coefficient for these patterns, ρFR,F̄R =

−0.6, is lower than the threshold τ , thus FR is reported
as anomalous. The responsibility scores for A,B,C, and
Z are, respectively, 0,−0.28, 0.25, and 0.07; suggesting
that packets are ordinarily transmitted to A and Z, but,
the number of packets to B is abnormally low while the
count to C is exceptionally high. In other words traf-
fic usually forwarded to B is now going through C. In
the case of a next hop dropping a significant number
of packets, the responsibility score of this hop will be
negative while the score of Z will be large.

6. DETECTION OF MAJOR EVENTS
The proposed delay analysis method (§ 4) and packet

forwarding model (§ 5) are both designed to report
anomalies found in large-scale traceroute measurements.
With RIPE Atlas these methods allow us to monitor

hundreds of thousands links and potentially obtain a
large number of alarms (i.e. either delay changes or
forwarding anomalies). Investigating each alarm can be
very tedious and time consuming. In this section we
introduce a simple technique to aggregate alarms and
report only significant network disruptions.
Alarm aggregation. Major network disruptions are
characterized by either a large-scale alteration of nu-
merous links or exceptional connectivity issues at a one
or more locations. We wish to emphasize both by aggre-
gating alarms based on their temporal and spatial char-
acteristics. The temporal grouping of alarms allows us
to highlight large-scale events impacting many routers
at the same time. Similarly, collecting alarms that are
topologically close allows us to emphasize network dis-
ruptions bound to a particular entity. In early experi-
ments we have tried several spatial aggregations, includ-
ing geographical ones, and found that grouping alarms
per AS is relevant because most significant events are
contained within one or a few ASs.

Consequently, we group delay change alarms by the
reported IP pair and forwarding anomalies by the next
hops’ IP addresses. The IP to AS mapping is done using
longest prefix match, and alarms with IP addresses from
different ASs are assigned to multiple groups.

Alarms from each AS are then processed to com-
pute two time series representing the severity of re-
ported anomalies, thus the AS’s condition. The severity
of anomalies is measured differently for delay change
and packet forwarding alarms. For delay changes the
severity is measured by the deviation from the normal
reference, d(∆) (Equation 6). Severity of forwarding
anomalies is given by ri, the responsibility score of the
reported next hop i (Equation 9). Thereby, AS network
conditions are represented by two time series, one is the
sum of d(∆) over time and the other the sum of ri over
time. In the case of forwarding anomalies, ri values are
negative if a hop from the AS is devalued and positive
otherwise. Consequently, if traffic usually goes through
a router i but is suddenly rerouted to router j, and both
i and j are assigned to the same AS, then the negative
ri and positive rj values cancel out, thus the anomaly
was mitigated at the AS level.
Event detection. Finding major network disruptions
in an AS is done by identifying peaks in either of the
two time series described above. We implement a simple
outlier detection mechanism to identify these peaks.

Let X = {xt|t ∈ N} be a time series representing
delay changes or forwarding anomalies for a certain AS
and mag(X) be the magnitude of the AS network al-
teration defined as:

mag(X) =
X −median(X)

1 + 1.4826 MAD(X)
(10)

where median and MAD are the one-week sliding me-
dian and median absolute deviation [49]. In the follow-
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(a) Complementary cumulative
distribution function for the de-
lay change magnitude. Promi-
nent changes are on the right
hand side.

(b) Cumulative distribution
function of the forwarding
anomaly magnitude. Prominent
anomalies are on the left hand
side.

Figure 5: Distribution of hourly magnitude for
all ASs. Arrows point to prominent anomalies
presented in the three study cases.

ing sections we report magnitude scores found with our
dataset and investigate corresponding network disrup-
tions.

7. RESULTS
Using the Internet-wide traceroutes from RIPE Atlas

(§ 2), we report delay changes and forwarding anoma-
lies from eight months in 2015 and 1060 ASs. In the
following we present aggregate results of the identified
delay changes and forwarding anomalies. Then, we dive
into case studies showing the relevance of the proposed
methods to detect and locate network disruptions of
different types (§ 7.1, 7.2, and 7.3).
Delay changes. In our experiments we monitored
delays for 262k IPv4 links (42k IPv6 links). On average
links are observed by 147 IPv4 probes (133 IPv6 probes)
and 33% of the links were reported to have at least one
abnormal delay change.

We computed the hourly delay change magnitude for
each monitored ASs, Figure 5a depicts the distribution
of all these values. 97% of the time we observe a mag-
nitude lower than 1, meaning that ASs are usually free
of large transient delay changes. The heavy tail of the
distribution, however, indicates that delay changes can
have a very detrimental impact on Internet delays. We
manually inspected the most prominent delay changes
but found that validating such results is particularly
hard as public reports are rarely available and Internet
service providers are reluctant to disclose troubles that
occurred in their networks. In Section 7.1, we detail a
DDoS attack that generated congestion in several ASs
and accounts for 5 of the top 23 delay changes reported
in our dataset (Fig. 5a).

Furthermore, in accordance with the central limit
theorem, we observe a narrower confidence interval for
links visited by numerous probes; hence a better differ-
ential RTT estimation and the ability to detect smaller
delay changes.
Forwarding anomalies. Using RIPE Atlas tracer-
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Figure 6: Delay change magnitude for AS25152
reveals the two DDoS against the K-root server.

outes, we also computed packet forwarding models for
170k IPv4 router IPs (87k IPv6 router IPs). These are
the number of router IP addresses found in traceroutes;
to resolve these to routers IP alias resolution techniques
should be deployed [26]. On average forwarding models
contain four different next hops over the eight months
of data.

We computed the hourly forwarding anomaly mag-
nitude for each AS, Figure 5b illustrates the distri-
bution of these values. This distribution features a
heavy left tail representing a few significant forward-
ing anomalies due to important packet loss or traffic
redirection. Namely, forwarding anomaly magnitude is
lower than −10 for only 0.001% of the time. Similarly to
the delay changes, validating these results is challeng-
ing. In Section 7.2 and 7.3 we investigate two significant
events from the top 20 forwarding anomalies found in
our dataset (Fig. 5b). These events are already publicly
documented but the proposed method provides further
insights on their location and impact.

7.1 DDoS attack on DNS root servers
Our first case-study shows the impact of a large dis-

tributed denial-of-service (DDoS) attack on network in-
frastructure. The simplest form of DDoS attack con-
sists of sending a huge number of requests to a targeted
service, overwhelming the service and leaving little or
no resources for legitimate use. The extremely large
amount of traffic generated by this type of attack is not
only detrimental to the victim but also routers in its
proximity.

We investigate network disruptions caused by two
DDoS attacks against DNS root servers. These attacks
have been briefly documented by root server operators
[39, 48]. The first attack was on November 30th from
06:50 to 09:30 UTC, the second on December 1st from
05:10 until 06:10 UTC. As the source IP addresses for
both attacks were spoofed, it is unclear from reports
[48] where the traffic originated.

Thanks to the K-root operators, we were able to care-
fully validate our results for the attack toward the K
name server and the corresponding AS (AS25152).
Event detection. Monitoring the delay change mag-
nitude for AS25152 clearly shows the two attacks against
the K-root infrastructure (Fig. 6). The two peaks on
November 30th and December 1st highlight important
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Figure 7: Examples of delay change alarms reported during the DDoS attacks against DNS root
servers. The attacks have differently impacted the connectivity of K-root server instances.

Figure 8: Alarms reported on November 30th

at 08:00 UTC and related to the K-root server.
Each node represent an IPv4 address, edges
stand for reported alarms. Rectangular nodes
represent anycast addresses, hence distributed
infrastructure. Circular node colors represent
IP addresses related to certain IXPs.

disruptions of an unprecedented level. The first peak
spans from 07:00 to 09:00 UTC and the second from
05:00 to 06:00 UTC, which correspond to the intervals
reported by many server operators.

The highest forwarding anomaly magnitude for AS25152
is recorded on November 30th at 08:00 and is negative
(mag(X) = −0.5), meaning that only a few packets
have been dropped in ASs hosting root servers. These
observations match the server operators’ reports and
emphasize the strength of anycast in mitigating such
attacks.
In-depth analysis: K-root. A key advantage of our
method is reporting delay changes per link, allowing
us to precisely locate the effects of the two attacks in

the network. Reported delay changes contain one IP
address for each end of the link. Delay changes detected
on the last hop to the K-root server are identified by the
server IP address (193.0.14.129) and the router in front
of it. Since K-root is anycast, the actual location of a
reported server instance must be revealed by locating
the adjacent router. For example, Figure 7a depicts the
differential RTT for an IP pair composed of the K-root
IP address and a router located in Kansas City; hence
this link represents the last hop to the K-root instance
in Kansas City.

During the two attacks we saw alarms from 23 unique
IP pairs containing the K-root server address. Differ-
ent instances were impacted differently by the attacks.
First, we found instances affected by both attacks, for
example the one in Kansas City (Fig. 7a) is reported
during the entire period of time documented by server
operators. Second, we also observed instances impacted
by only one attack, see Figure 7c. The most reported in-
stance during that period is the one deployed in St. Pe-
tersburg (Fig. 7d). For this instance abnormal delays
are observed for 14 consecutive hours. A possible ex-
planation for this is that hosts topologically close to
this instance caused anomalous network conditions for
a longer period of time than other reported DDoS in-
tervals. Finally, thanks to anycast, for some instances
we did not record anomalous network conditions. Fig-
ure 7b illustrates the differential RTT for an instance
in Poland that exhibits very stable delays. The corre-
sponding normal reference is exceptionally narrow and
constant even during the attacks.
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Not only are the last hops to K-root instances de-
tected by our method; we also observe other links with
important delay changes. Figure 7e depicts a link in the
Deutscher Commercial Internet Exchange (DE-CIX) which
is upstream of the K-root instance in Frankfurt (Fig. 7c).
This link between Hurricane-Electric (AS6939) and the
K-root AS exhibits a 15ms delay change (difference be-
tween the median differential RTT and the reference
median) during the first attack. The upstream link of
the instance in St.Petersburg (Fig. 7f) is also signifi-
cantly altered during the attack and is consistent with
the peculiar changes observed for this instance (Fig. 7d).
In certain cases, we observed effects of the attack even
further upstream. For example, we observe 7.5ms de-
lay change on a link in the Geant network three hops
away from the K-root server (see Geant 62.40.98.128 in
Fig. 8).

To assess the extent of the attacks on the network,
we create a graph, where nodes are IP addresses and
links are alarms generated from differential RTTs be-
tween these IP addresses. Starting from the K-root
server, we see alarms with common IP addresses, and
obtain a connected component of all alarms connected
to the K-root server. Figure 8 depicts the connected
component involving K-root for delay changes detected
on November 30th at 08:00 UTC. An anycast address
is illustrated by a large rectangular node, because it
represents several physical systems. Figure 8 does not
show the physical topology of the network but a logi-
cal IP view of reported alarms. Each edge to an any-
cast address usually represents a different instance of
a root server. There are rare cases where two edges
may represent the same instance, for example, the K-
root instance available at AMS-IX and NL-IX is ac-
tually the same physical cluster. Some of the alarms
mentioned above and illustrated in Figure 7a, 7c, and
7e are also displayed in Figure 8. The shape of the
graph reveals the wide impact of the attack on network
infrastructure. It also shows that alarms reported for
the K-root servers are adjacent to the ones reported
for the F and I-root servers. This is due to the pres-
ence of all three servers at the same exchange points;
hence some network devices are affected by malicious
traffic targeting multiple root servers. The concentra-
tion of root servers is of course delicate in this situation.
Although packet loss at root servers has been negligi-
ble, we found significant forwarding anomalies at their
upstream providers. For example, AMS-IX (AS1200)
shows a forwarding anomaly magnitude of −24 during
that incident.

Additional root servers are represented by different
connected components. During the three hours of at-
tack there were 129 alarms involving root servers for
IPv4 (49 for IPv6). In agreement with the observations
made by servers operators [48], we observed no signifi-
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Figure 9: Delay change magnitude for all moni-
tored IP addresses in two Level(3) ASs.
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Figure 10: Forwarding anomaly magnitude for
all monitored IP addresses in two Level(3)ASs.

cant delay change for root servers A, D, G, L, and M.

7.2 Telekom Malaysia BGP route leak
The above example of the K-root servers illustrates

the benefits of our delay change detection method in
detecting anomalies near a small AS at the edge. In this
section we investigate network disruptions for a tier 1
ISP showing that the methods also enable us to monitor
large ASs containing numerous links. This case study
also exposes a different type of network disruption; here
the detected anomalies are caused by abnormal traffic
rerouting.

On June 12th 2015, 08:43 UTC, Telekom Malaysia
(AS4788) unintentionally sent BGP announcements for
numerous IP prefixes to its provider Level(3) Global
Crossing (AS3549) which accepted them. The resulting
traffic attraction to Telekom Malaysia caused latency
increases for Internet users all over the globe. The event
was acknowledged by Telekom Malaysia [7], and inde-
pendently reported by BGP monitoring projects [46,
25]. Connectivity issues have been mainly attributed
to congested peering links between Telekom Malaysia
and Level(3) Global Crossing. In the remainder of this
section we investigate the impact of rerouted traffic
on Level(3) Global Crossing (AS3549) and its parent
company, Level(3) Communications (AS3356), showing
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(a) London-London link: delay change reported on June 12th

at 09:00 and 10:00 UTC.
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(b) New York-London link: delay change reported at 10:00

UTC. RTT samples for June 12th at 09:00 UTC are missing
due to forwarding anomaly (packet loss).

Figure 11: Example of delay change alarms re-
ported during the Telekom Malaysia BGP route
leak for two links from Level3 networks.

Figure 12: Congestion at Level(3) Global Cross-
ing (AS3549) in London on June 12th 2015. Each
node represents an IPv4 address, edges repre-
sent delay changes for an IP pair. Red nodes de-
pict IP addresses involved in forwarding anoma-
lies.

worldwide disruption.
Network disruptions in Level(3). Monitoring de-
lay changes and forwarding anomalies for the numerous
links that constitute the two Level(3) ASs is made easy
with the magnitude metric. Figure 9 and 10 depict
the magnitude in terms of, respectively, delay change
and forwarding anomaly for the two Level(3) ASs in
June 2015. The two positive peaks in Fig. 9 and the
two negative peaks in Fig. 10 are all reported on June
12th from 09:00 to 11:00 UTC, exposing the impact of
rerouting on both ASs. The overall delay increased for
both ASs, but AS3549 was most affected. The neg-
ative forwarding anomaly magnitudes (Fig. 10) show
that routers from both ASs were disappearing abnor-
mally from the forwarding model obtained by tracer-

oute. At the same time packet loss increased, imply-
ing that numerous routers from both ASs dropped a
lot of packets. These are the most significant forward-
ing anomalies monitored for Level(3) in our 8-month
dataset.
In-depth analysis. Reverse DNS lookups of reported
IP addresses suggests congestion was seen in numerous
cities, including, Amsterdam, Berlin, Dublin, Frank-
furt, London, Los Angeles, Miami, New York, Paris,
Vienna, and Washington, for both Level(3) ASs. Figure
11 shows the differential RTT obtained for two links lo-
cated in New York and London. Both links exhibit sig-
nificant delay increases synchronous with the Telekom
Malaysia route leak. The London-London link (Fig. 11a)
is reported from 09:00 to 11:00 UTC, while the New
York-London link (Fig. 11b) is reported from 10:00 to
11:00 UTC. The IP address identified in New York is
found in forwarding anomalies, and is suspected of drop-
ping probing packets from 09:00 to 10:00 UTC; hence
preventing the collection of RTT samples for this link.
This example illustrates the complementarity of the de-
lay change and forwarding anomaly detection methods.

As in the case of the K-root servers, several adjacent
links are reported at the same time. Figure 12 shows
related components of alarms reported on June 12th at
10:00 UTC in London. The label on each edge is the
absolute difference between the observed median differ-
ential RTT and the median of the normal reference. The
links in Fig. 11a and 11b are marked by delay changes
of, respectively, +229ms and +108ms. Similar observa-
tions are made for the two Level(3) ASs and numerous
cities mainly in U.S. and Europe. Consequently, even
non-rerouted traffic going through Level(3) at that time
could also incur significant latency increase and packet
loss.

7.3 Amsterdam Internet Exchange Outage
The first two study cases presented network disrup-

tions with significant delay changes. Here we introduce
an example of network disruption visible only through
forwarding anomalies; showing the need for both de-
lay change and forwarding anomaly detection methods.
In this example the disruption is caused by a techni-
cal fault in an Internet exchange resulting in extensive
connectivity issues.

On May 13th 2015 around 10:20 UTC, the Amster-
dam Internet Exchange (AMS-IX) encountered substan-
tial connectivity problems due to a technical issue dur-
ing maintenance activities. Consequently, several con-
nected networks could not exchange traffic through the
AMS-IX platform; hence a number of Internet services
were unavailable [6]. AMS-IX reported that the prob-
lem was solved at 10:30 UTC; but traffic statistics indi-
cate that the level of transmitted traffic did not return
to normal until 12:00 UTC [27, 9].
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Figure 13: Forwarding anomaly magnitude for
the Amsterdam Internet Exchange peering LAN
(AS1200).

Event detection. The delay change method did not
conclusively detect this outage, due to lack of RTT
samples during the outage. Indeed, the packet loss
rate showed significant disturbances at AMS-IX. These
changes were captured by our packet forwarding model
as a sudden disappearance of the AMS-IX peering LAN
for many neighboring routers. Consequently, forward-
ing anomalies with negative responsibility scores (Equa-
tion 9) were synchronously reported for IP addresses in
the AMS-IX peering LAN. Monitoring the magnitude
for the corresponding AS (Fig. 13) reveals these changes
as a significant negative peak on May 13th 11:00 UTC.
Further, the coincidental surge of unresponsive hops re-
ported by forwarding anomalies supports the fact that
traffic was not rerouted but dropped. The packet for-
warding model allows us to precisely determine peers
that could not exchange traffic during the outage. In
total 770 IP pairs related to the AMS-IX peering LAN
became unresponsive. Therefore, the proposed method
to learn packet forwarding patterns and systematically
identify unresponsive IP addresses greatly eases the un-
derstanding of such an outage.

8. INTERNET HEALTH REPORT
The key contribution of our method is to allow oper-

ators to troubleshoot connectivity issues outside their
own network, normally a very difficult task. Typical
circumstances include distant users of other ISPs com-
plaining that an ISP’s web service is unavailable, or
local customers complaining to their ISP about con-
nectivity issues, though their ISP’s network is not the
cause of the issues. In these cases being able to pin-
point the exact location of the problem allows operators
to contact the appropriate NOC, or to consider routing
decisions to avoid unreliable networks.

In order to provide a practical tool to network oper-
ators, we have integrated the proposed methods with
the RIPE Atlas streaming API. This gives us near-real
time traceroutes for all long-lived Atlas measurements
(including built-in and anchoring measurements) and
enables us to detect events in a timely manner. Our re-
sults are publicly available through an interactive web-
site [2] and an API [3] such that researchers and oper-
ators can access computed results in an easy and sys-

tematic way. Of course, an operator can take our code
and run it against the Atlas streaming API themselves,
focusing on only the part(s) of the topology which in-
terests them [4]. Thanks to an increasing number of
Atlas measurements and probes, the number of moni-
tored ASs is constantly increasing. As of April 2017, we
were monitoring a total of 5,436 ASs, a significant frac-
tion of the 7,800 transit ASs observed in the Internet
[22].

We encourage operators interested in using our sys-
tem to deploy Atlas anchors in their network so that
probes will automatically initiate traceroute towards
their network, and visited transit links will be mon-
itored by our system. The results enable operators
to easily monitor the diverse transit networks between
their infrastructure and the thousands of Atlas probes
deployed world-wide.

9. CONCLUSIONS
In this paper we investigated the challenges to moni-

toring network conditions using traceroute results. We
then tackled these challenges with a statistical approach
that took advantage of large-scale traceroute measure-
ments to accurately pinpoint delay changes and for-
warding anomalies. Our experiments with the RIPE
Atlas platform validated our methods and emphasized
the benefits of this approach to characterize topological
impacts.

The methods proposed in this paper complement the
literature by circumventing common problems found in
past work. With the help of the packet forwarding
model, we take advantage of all collected traceroutes
including even those that are incomplete due to packet
loss. Also, as we do not rely on any IP or ICMP options,
the number of monitored routers is superior to previous
work. In fact, our statistical approach allows us to study
any link with routers responding to traceroute and that
can be seen by probes hosted in at least three different
ASs. Therefore, the number of monitored links mainly
depends on the placement of probes and the selected
traceroute destinations. In other words, using our tech-
niques the number of monitored links is given by the
measurement setup rather than the router’s implemen-
tation. Stub ASs hosting probes but no traceroute tar-
gets were not monitored as they were observed only by
probes from the same AS. In the case of symmetric links
we could release the probe diversity constraint. How-
ever, due to the current lack of efficient technique to
assert an arbitrary link symmetry we leave this task for
future work .

We make our tools and results publicly available [2,
3, 4] in order to share our findings and contribute to a
better understanding of Internet reliability.

13



10. REFERENCES

[1] CAIDA, The IPv4 Routed /24 Topology Dataset.
https://www.caida.org/data/active/ipv4_

routed_24_topology_dataset.xml.
[2] Internet Health Report.

http://romain.iijlab.net/ihr/.
[3] Internet Health Report API.

http://romain.iijlab.net/ihr/api/.
[4] Internet Health Report source code. https:

//github.com/romain-fontugne/tartiflette.
[5] RIPE NCC, Atlas. https://atlas.ripe.net.
[6] Follow-up on previous incident at AMS-IX

platform. https://ams-ix.net/newsitems/195,
May 2015.

[7] Telekom Malaysia: Internet services disruption.
https://www.tm.com.my/OnlineHelp/

Announcement/Pages/

internet-services-disruption-12-June-2015.

aspx, June 2015.
[8] E. Aben. Hurricane Sandy as seen by RIPE Atlas.

NANOG 57, February 2013.
[9] E. Aben. Does the internet route around damage?

a case study using RIPE Atlas.
https://labs.ripe.net/Members/emileaben/

does-the-internet-route-around-damage,
November 2015.

[10] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay.
Variability in TCP round-trip times. In
Proceedings of IMC’03, pages 279–284. ACM,
2003.

[11] K. G. Anagnostakis, M. Greenwald, and R. S.
Ryger. cing: Measuring network-internal delays
using only existing infrastructure. In INFOCOM
2003, volume 3, pages 2112–2121. IEEE, 2003.

[12] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and
R. Teixeira. Avoiding traceroute anomalies with
Paris traceroute. In IMC, pages 153–158. ACM,
2006.

[13] R. Banerjee, A. Razaghpanah, L. Chiang,
A. Mishra, V. Sekar, Y. Choi, and P. Gill. Internet
outages, the eyewitness accounts: Analysis of the
outages mailing list. In Passive and Active
Measurement, pages 206–219. Springer, 2015.

[14] B. Chandrasekaran, G. Smaragdakis, A. Berger,
M. Luckie, and K.-C. Ng. A server-to-server view
of the internet. In CoNEXT. ACM, 2015.

[15] W. de Donato, P. Marchetta, and A. Pescapé. A
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APPENDIX
A. QUALITATIVE COMPARISON

As opposed to tulip [30], cing [11], Pong [17] and
TSLP [28], the main benefits of our proposal are its
compliance with current router functionalities, its ro-
bust statistical analysis and the recycling of existing
data.

All techniques, including ours, require routers send-
ing back ICMP packets for TTL-expired packets. In
addition, TSLP requires routers to implement IP op-
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tions (pre-specified timestamps or record route). Tulip
and cing require routers to implement ICMP Times-
tamp and have strong assumptions for IP ID imple-
mentation.

In addition to these restrictions, some techniques have
coverage limits. Pong can only monitor paths between
probes, TSLP considers only inter-domain symmetric
links adjacent to the probes’ ASs, and our system is
constrained to links monitored by probes from at least
3 different ASs.

Finally, tulip and cing are consuming significantly
more network resources than other methods. These two
methods rely on ICMP timestamps and require a large
number of samples to correct routers’ clocks artifacts.
Consequently, the authors of tulip estimate delays on a
path using 1000 measurements per router plus an extra
500 measurements per router for packet loss estimation
[30]. In contrast, our system requires as little as nine
packets per router and is designed to take advantage
of existing traceroute data, thus really adding no extra
load to the network.

B. THEORETICAL LIMITATIONS
The sensitivity of our approach ino detecting abnor-

mal delay changes depends mainly on the size of the
time bin which is based on probes deployment and prob-
ing rate. A link is monitored only if it is traversed from
vantage points within at least three different ASs (Sec-
tion 4.3). As traceroute sends three packets per hop, for
a link we expect at least m = 3∗3 packets per time bin.
Consequently, the number of vantage points monitoring
a link and their probing rate r (i.e. number of tracer-
outes per hour) determine the minimum usable time bin
Tmin = m

3rn . Intuitively experiments with many probes
or a high probing rate would permit the use of short
time bin.

Let T ≥ Tmin be the selected time bin, then 3rnT is
the expected number of packets obtained for a link per
time bin. Because our approach relies on the median,
50% of these packets should be impacted by an event
to be detected. In other words, an event is detected if
it affects more than 1 + 3rnT

2 packets within a time bin.
Consequently, the smallest detectable event in hour is:

1

3rn
(1 +

3rnT

2
) =

1

3rn
+
T

2
. (11)

In Section 7 we analyze builtin measurements which
initiate traceroute every 30 minutes (r = 2 traceroutes
per hour) thus the minimum usable time bin is Tmin =
0.5 hour. In our experiments we conservatively set the
time bin T = 1 hour, hence, according to Equation 11,
the shortest event we can detect for a link monitored by
three vantage points (n = 3) is 33 minutes. Because of
the higher probing rate of anchoring measurements (r =
4), one could detect events lasting only nine minutes
with this dataset.
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