
HAL Id: hal-03321670
https://hal.archives-ouvertes.fr/hal-03321670

Submitted on 17 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fair Delegation of Digital Services Without Third
Parties

Andréas Guillot, Fabrice Theoleyre, Cristel Pelsser

To cite this version:
Andréas Guillot, Fabrice Theoleyre, Cristel Pelsser. Fair Delegation of Digital Services Without Third
Parties. Symposium on Computers and Communications (ISCC), Sep 2021, Athènes, Greece. �hal-
03321670�

https://hal.archives-ouvertes.fr/hal-03321670
https://hal.archives-ouvertes.fr

Fair Delegation of Digital Services Without
Third Parties

Andreas Guillot
University of Strasbourg

Strasbourg, France
andreas.guillot@unistra.fr

Fabrice Theoleyre
CNRS

Strasbourg, France
theoleyre@unistra.fr

Cristel Pelsser
University of Strasbourg

Strasbourg, France
pelsser@unistra.fr

Abstract—The software architecture of most applications
is more and more fragmented, and relying on micro-services.
Moreover, some parts may be specialized, and a customer
may choose to delegate a task to a service provider. In
this situation, the customer must be sure to get results that
comply with the task when they pay the service provider,
and inversely. We propose a framework based on atomic
swaps to enable such simultaneous exchanges. Our scheme
is based on exchanging a transactional key during an atomic
swap. Our framework protects both actors, and enables
non-repudiation, from both sides, even in an asynchronous
environment.

Index Terms—Services; Secure Delegation; Atomic Swap;

I. INTRODUCTION

Transactions involve two parties: a buyer wants to buy
some good, and a seller wants to trade their work for a
compensation. In face-to-face transactions, the exchange
occurs almost simultaneously. If either party refuses to
complete their part of the exchange, the transaction
aborts, and both parties keep their belongings. This
fair exchange is a transaction with only two possible
outcomes:

1) Successful when both parties end the transaction
with what they desire, i.e. correct data for correct
amount of money;

2) Cancelled, where the transaction fails without any
party losing anything.

Services, and particularly micro-services, have become
popular: they rely on a fragmented architecture, where
each service is in charge of a small part of a global
software. This part may involve a customer that delegates
a service to a service provider. In this situation, a fair
exchange needs to secure the transaction, especially if
no trusted third party can arbiter disputes.

The customer and the service provider agree on the
terms of the service; a set of specifications that de-
fines what is expected by the customer (e.g. a program
with a specified accuracy), and by the service provider
(e.g. currencies). Typically, the service provider is paid
only if these specifications, or Service Level Agreements
(SLAs) [1], are met.

If the customer and the service provider do not trust
one another, then they need a transaction where they ex-
change both the data, and the payment, simultaneously.

In other words, we must guarantee the transaction’s
atomicity for both actors, even when using an asyn-
chronous, best-effort Internet infrastructure, or when an
actor is malicious:

• if the customer sends the payment, they must re-
ceive SLA compliant data;

• if the service provider produces SLA compliant
work, they must receive their payment. The cus-
tomer should not be able to invalidate the payment
if the work is SLA compliant (non-repudiation).

Most solutions rely on a trusted third party to enforce
atomicity and SLA verification, as a fair exchange is im-
possible without a third party [2]. Human third parties
suffer from two limitations: both parties (i) must trust
the arbiter, and (ii) the arbiter must not disclose data. For
instance, Zhou et al. reveal the data to a human witness,
and mitigate the risk of getting a malicious arbiter by
selecting it randomly [3]. Cryptographic operations can
remove the need to disclose data to the arbiter [4], but
the arbiter is still able to favor/damage an actor by
disclosing secrets.

Recent works use the Blockchain to remove the lim-
itations of a human third party [5]. Leveraging the
Blockchain’s immutability (i.e. unaltereable past states)
with its public visibility, actors are able to create a smart
contract to act as a third party. They can verify the code
of the smart contract before the start of the transaction.
The public visibility of the Blockchain makes it a bad
candidate to transfer data because (i) the private data
will be readable by everyone, and (ii) pushing data
into the Blockchain is very costly. We can solve this
by exchanging the encrypted data off-chain, and by
exchanging a fixed-sized key for currencies using the
third party smart contract [5].

However, this solution is unsuitable for the private
delegation of a service because it (i) reveals part of the
data in their exchange, and (ii) assumes that the target
file is known in advance. We need a protocol where (i)
the target file, the processing output, is not known in
advance, (ii) we do not disclose its contents, and (iii)
where the target file must be SLA compliant.

Let us illustrate the interest of these properties with an
application that creates a multi-party privacy preserving

deep learning model [6]. In their solution, participants
(i.e. service providers) compute local models on private
datasets, and the system (i.e. the customer) aggregates
the models’ parameters, and not the private data, to
create a more accurate model.

Our contributions, which address all these constraints,
are the following:

1) Fair Service Delegation: We propose a protocol where
customers delegate services to service providers;

2) Proofs of fairness: We show that our solution is fair,
i.e. a transaction either succeeds, or ends without
any party gaining an unfair advantage over the
other, and that we have no possible disputes.

II. RELATED WORK

The first approach to fair exchange is to remove the
need for a third party. In [7], the authors rely on zero
knowledge proofs so that an actor is able to prove
that it has what the other desires without revealing it.
The service provider sends the encrypted data to the
customer, and the customer deposits money in a smart
contract that can only be unlocked if called with the
secret that matches the zero-knowledge proof. Then, the
service provider reveals the secret that matches the proof
by calling the smart contract, which allows the service
provider to get the smart contract’s deposit, and the
customer to decrypt the encrypted data.

However, creating zero knowledge proofs is so com-
putationally intensive to create, and to verify, that their
use is prohibitive.

The historical approach to fair exchange relies on the
use of a trusted third party that settles disputes. Kupcu
et al. [4] propose an optimistic protocol for fair exchange
in p2p file sharing. A trusted third party called the arbiter
only intervenes when there is a conflict between the
customer and the service provider. If a conflict occurs,
the arbiter uses cryptographic keys and signatures, and
not the data, to determine who is malicious. The arbiter
needs to be trusted, as they might advantage an actor
by sending the other actor’s key. Similarly, Zhou et al.
[3] rely on a set of third-parties called witnesses that
they randomly select from a large set. In doing so, they
alleviate the chance that a malicious third party may
be involved in the transaction. These witnesses receive
incentives to verify service violations, which increases
the cost of the transaction, and a malicious witness may
still rule unfairly. However, involving witnesses has a
cost in delay (selection, transmission), and the customer
or the service provider needs to pay these witnesses,
increasing the transaction’s cost.

The main drawback of this family of solutions is that
one may never fully trust the third parties, especially if
they alternate, in which case one would not be able to
reuse a witness they consider to be trustworthy.

It is also possible to use the blockchain as a determin-
istic third party. Such escrow combines the properties

of the blockchain (immutable, public knowledge, and im-
putable) with smart contracts to design a protocol where
a party gets their share of the transaction (e.g. cryp-
tocurrencies) by revealing a secret to the contract (e.g.
a cryptographic key). These smart contracts use high-
level programming languages (e.g. Solidity [8] contracts
on the Ethereum [9] blockchain) to execute programs on
all the nodes of the blockchain. By combining the ad-
vantages of the blockchain with smart contracts, the re-
search community developed a profusion of distributed
applications, e.g. a voting system for Switzerland [10].
Involving a trusted third party that punishes malicious
actors requires setting up an escrow [11] to draw from
if a misbehavior occurs, or a reputation system [12].

FairSwap [13] uses proofs of misbehavior, where a party
can punish the other party if it proves that the other
misbehaved. They include a signature that uniquely
identifies the file that is exchanged during the transac-
tion, so that the customer can verify if the file is indeed
the same. If it is not, then the duped party can prove
the misbehavior to a judge smart contract, which will
then punish the malicious actor. TrueBit [14] works in a
similar fashion, where they use multiple miners from the
Blockchain to determine if someone produced false data.
In that case, the system itself penalizes the malicious
user.

This family of solutions shares a common drawback,
namely the fact that data needs to be sent to the
Blockchain to prove or disprove the dispute. This adds
a cost to the transaction, especially if the data is large.

Delgado-Segura et al. [5] rely also on the blockchain
as a third party, but without any possible dispute. The
service provider sends the key that decrypts the traded
data after being paid by the customer. They protect an
honest customer from a malicious service provider by
revealing a subset of the unencrypted traded data and
by proving that it is a part of the encrypted file. This
solution relies on prior knowledge of the exchanged file,
and reveals part of the data: in service delegation, the
customer does not know a priori what it will receive.

III. PROBLEM STATEMENT AND ASSUMPTIONS

Modern applications often rely on a collection of tasks.
A company may not have all the skills and needs to
outsource some tasks to other entities. Such service
delegation involves two parties:

1) a customer that offloads the service execution be-
cause of computational or knowledge constraints;

2) a service provider that exposes a service executable on
demand by any customer on that customer’s data.

The customer defines their expectations for the task
with SLAs that the service provider must follow. Once
the service provider completes their work, they send the
data to the customer, and receive their payment in ex-
change. These two operations need to happen atomically.

A0 Actors assume that the other is malicious
A1 A file encrypted with k can only be decrypted

using k′ from the same key pair
A2 P() tests if two keys are in the same pair
A3 H() is non-reversible and collision free
A4 The actors know the other before the transaction
A5 Sharing input with sp is not a privacy violation
A6 The verfier’s contents cannot be read
A7 The task’s logic is automatable
A8 {sk, pk} pairs are only used in one transaction
A9 Actors communicate through a secured channel
A10 Public Blockchain where all can read/write
A11 The smart contract is already on the Blockchain
A12 Actors know the smart contract’s address
A13 Actors trust the smart contract’s code
A14 Actors do not stall the transaction
A15 sp eventually produces SLA compliant work

TABLE I: Assumptions

A. Scenario

In our party-party deep learning example, we assume
the following. The customer has a set of SLAs that
define (i) what the task consists in, and (ii) what are the
criteria that the work must meet. They also have data
on which to perform the task. The service provider has
a set of skills that the customer lacks, and must produce
SLA compliant work on the data they receive from the
customer. Once complete, they send their work to the
customer and expect to be paid in return.

B. Security requirements

The security properties that we need for a fair delega-
tion of services are the following:

P1- Fair service delegation: The customer receives data
if they spend currencies to pay the service provider;

P2- SLA enforcement: The customer receives work that
is SLA compliant;

P3- Fair compensation: The service provider receives
the agreed upon wage;

P4- Protection from outsiders: A third party cannot
gain information by listening to communications or
by reading the Blockchain.

C. Model and assumptions

This section summarizes all our assumptions regard-
ing our cryptographic capabilities and the actors’ behav-
iors. We list our variables and functions in Table II.

Public-key cryptography relies on a private key (ab-
brv. sk) and a public key (abbrv. pk) respectively. We
take the following assumptions:

A1: A key can only decrypt a message encrypted with
the other key in the key pair;

Notation Description

Actors c Customer
sp Service provider

Knowledge
before the
transaction

wage{c,sp} Amount that c pays, and
that sp receives

input c’s input data used by sp
sk{c,sp} Private key of actor {c, sp}
pk{c,sp} Public key of actor {c, sp}

Data
operations

Vskc ,pksp Tests work against SLA
E(k, data) Encrypts data using key k
D(k, data) Decrypts data using key k
H(data) Outputs data’s hash
S(k, data) Outputs data’s signature

TABLE II: Notations

A2: We can determine if two keys belong to the same
key pair by comparing the public key with the
public key derived from the private one (P());

A3: We use a collision free, non-reversible hashing func-
tion [15] (H());

We use E(k, data) (resp. D(k, data)) to encrypt
(resp. decrypt) data using a key. Note that the private
(resp. public) key can be used to decrypt messages
encrypted with the public (resp. private) key. S(k, data)
returns the signature of data using the key k [15]. A
signature validates the sender’s identity.

Asymmetric operations are more computationally ex-
pensive than symmetric ones. However, we need a
mechanism to verify if a key is valid without decrypting
the data itself. Verifying the public key when having the
private one is an essential feature in our protocol.

An actor always acts under the suspicion that the other
is malicious (A0). They always protect their own interest.
Actors do not stall the transaction by never sending
data (A14), and that the service provider eventually
produces SLA compliant work (A15). We include these
assumptions to make sure that the transaction eventually
ends.

The actors interact with a public Blockchain support-
ing smart contract (e.g. Ethereum [9]) that they can read
and write to at all times (A10). The smart contract used
in this transaction is already in the Blockchain (A11), and
the actors know its address (A12). Actors trust the smart
contract’s code, as they can verify it before the start of
the transaction (A13).

IV. FAIR EXCHANGE OF SERVICES

Both actors start with the initial information described
in the previous section and summarized in Step (0) of
Figure 1. Our protocol has 4 steps:

Initialization: the customer and the service provider
must have a public (personal) key, and must decide
the price to pay/get for a given service;

Customer Service provider

 ==

Transitions

Smart contract

Ve
rif

ie
r

C
re

at
io

n
In

it
Se

rv
ic

e
Fi

na
liz

at
io

n
A

to
m

ic
 E

xc
ha

ng
e

Fig. 1: Different steps required to delegate services fairly

Creation of the verifier: the customer creates a verifier
checking if the work is SLA compliant, and creates
the proof of compliance if it is;

Service finalization: the service provider creates SLA
compliant work, encrypts it, and sends it to the cus-
tomer. The customer can verify the SLA compliance,
but cannot decrypt the work;

Atomic exchange: the customer and the service
provider exchange currencies for the key that
unlocks the service provider’s encrypted work.

A. (Offline) pre-initialization
The customer and the service provider have the fol-

lowing initial knowledge before the start of the trans-
action. We index the variables with the actor in their
possession, either c for the customer, or sp for the service
provider:

skc|sp: the private part of their key pair;
pkc|sp: the public part of their key pair, and the public

part of the other’s key pair;
wagec|sp: the wage that they expect to pay (resp. receive)

for the customer (resp. service provider).
We assume that the customer and the service provider

know each other before the transaction (A4). We assume
the existence of a directory, describing the API of each
service (e.g. [16]), so that the actors know each other, and
the terms of the service.

The customer prepares input, the data that they will
send to the service provider once the task begins. This
data must be transmitted to the service provider (A5) so
that they can perform their task. However, the service
provider are not allowed to share this data with any third
party.

Actors have an asymmetric key pair: skc and pkc for
the customer, and sksp and pksp for the service provider.
Note that these are disposable keys that the actors only
use for one transaction, and for nothing else (A8), as it
would damage them. This implies that the actors must
generate new key pairs for every transaction. We argue
that this is acceptable because the generation of ECDSA
256 bits key pairs (classical size used in Ethereum) is
fast, and that they only have to do it once for each
transaction. Note that they do not need to create new
wallet addresses for each transaction, which would be
much more costly. We assume that the actors already
share a secure channel for communications (A9; created
using e.g. mTLS [17]). This simplifies explanations, as
actors only need one disposable key pair that way. As
such, these keys can be disclosed without compromising
the secure channel, or the actors’ identities.

Both actors have their own wagec|sp variables to ensure
that one actor does not pay or receive less than the
agreed amount. If the two wages do not match, then
the transaction aborts.

Thus, we initialize the protocol in the following state
(Fig. 1):
(0): the service provider has their private/public key

pair {sksp, pksp}, and their wage wagesp. The cus-
tomer has their private/public key pair {skc, pkc},
and their wage wagec. They also have the service
provider’s public key pksp, and the input to be sent
to the service provider.

B. Online initialization — creation of the verifier
We assume that the task is verifiable without human

intervention (A7). While we agree that creating SLAs
for any real-world applications might be difficult (e.g.
determine artistic beauty), we also argue that this is
the only realistic way to fully automate task verifica-
tion. The formal specification of a service delegation
has already been defined for various arguably different
applications such as cancer treatment [18], or earthquake
predictions [19].

The verifier (i) receives data, (ii) checks if the input is
SLA compliant, and (iii) outputs the result. It contains a
secret: skc, that enables non-repudiation, as explained in
Section IV-C.

This verification acts in the following way (Fig. 1):
(1): the customer creates the verifier with the task’s logic,

the test data, and the secret;
(2): the customer sends the verifier and input to the

service provider. The service provider will then be
ready to start the work.

The service provider uses the verifier as a proof of
compliance to the customer. Thus, we make it impossible
to create a counterfeit proof. Additionally, this proof
must not contain sensitive information from any of the
actors, as the other would gain access to private data. We
consider that the verifier (binary program) is unreadable
by the service provider (A6): they cannot access its data,
or its secrets. They can just execute the binary with a
set of inputs and receive a proof of compliance, or an
error. Code obfuscation can further hide the contents of
the verifier [20].

C. Service finalization
After the service provider has finished working, they

have generated an output that needs to be sent to the
customer to trigger the payment. However, the output
cannot be sent directly since the exchange with the
customer has to be atomic. Thus, we need first to pre-
pare the atomic exchange: we need to transmit enough
information to start the atomic exchange, but no sensitive
information.

Our scheme relies on the following steps (Fig. 1):
(3): the service provider produces work using the cus-

tomer’s input;
(4): the work cannot be sent directly to the customer and

is encrypted with the service provider’s public key,
pksp. Still, this key is disposable and will only be
used for this transaction.
Because the encryption is asymmetrical, the cus-
tomer is not able to decode the work, even if they
are in possession of the key that encrypted this data;
they must know the service provider’s private key
to achieve that. Since this private key will only be
disclosed during the atomic exchange, the encryp-
tion protects the service provider: the customer will
only be able to decrypt the data once they send the
payment.

(5): the service provider executes the verifier with the
work they created. If the verification fails, then the
service provider goes back to Step (3). Otherwise,
the verifier returns the stamp, whose purpose is
twofold:

1) it uniquely identifies the work for non repudi-
ation. It uses the hash of E(pksp, w), the service
provider’s encrypted work, as illustrated in Fig-
ure 2.

Fig. 2: Creation of the stamp

2) it certifies the work is SLA compliant, with a
proof of compliance. By signing the hash de-
scribed above with skc, the verifier’s secret, the
stamp certifies that the work is SLA compliant.

The service provider cannot fake the stamp because
the verifier signs it with skc, their secret key (see
Figure 2). A malicious customer is unable to include
sensitive information inside the stamp (e.g. using
steganography) since its content is readable and ver-
ifiable. The service provider has enough knowledge
(i.e. the public key of the customer) to interpret the
content of the stamp;

(6): the service provider sends to the customer the en-
crypted work (w′) and the stamp generated by the
verifier.
It is worth noting that the encrypted work is trans-
mitted through a secure channel: no observer is
able to get it. Thus, an observer will not be able to
decrypt the work, even after the atomic exchange,
when the key becomes public on the Blockchain.

(7): the customer checks whether the hash of w′ matches
that of the stamp. If it does not, then the customer
aborts the transaction: it means that the verifier did
not validate the work. At this point, the customer
knows that the service provider produced SLA com-
pliant work, but is not able to decrypt it until they
get the service provider’s private key, sksp.

At the end of this step, the customer and the service
provider have enough knowledge to trigger the atomic
exchange.

D. Atomic exchange

The atomic exchange consists in atomically exchang-
ing the service provider’s secret key sksp to decrypt the
work (by the customer) and the payment. To perform
the exchange, we use the smart contract present in the
Blockchain (A11).

The atomic exchange consists in 4 steps (Fig. 1):
(8): the logic of the contract is that an entity can only

claim the customer’s wage if they send a key that
matches with the one published by the customer.
The customer pushes a block containing the service
provider’s public key and the wage they want to

pay. The service provider sees the customer’s mes-
sage since they know the customer’s identity on the
Blockchain;

(9): the service provider can check that the wage in
the contract is equal to what they expect (wagec =
wagesp). If wagec is lower, then it means that the
customer wants to pay them for less than ini-
tially agreed. Similarly, they check if the public key
pushed to the Blockchain by the customer in Step (8)
is really theirs (pksp). The transaction only proceeds
if both wages and both keys are equal;

(10): to validate the transaction, the service provider
sends their private key to the Blockchain. By push-
ing a block containing the private key to the
Blockchain, they indirectly communicate this infor-
mation to the customer, who is reading new blocks
from the public Blockchain (A10).
The contract tests whether the keys pushed by both
actors match (P(pksp, sksp)). The transfer of the cus-
tomer’s currencies (wagec) to the service provider
only occurs if the two keys belong to the same
key pair. Thus, the service provider must send their
private key sksp to trigger the payment;

(11): the customer can read the Blockchain to extract the
service provider’s private key, and to decrypt the
work they received in Step (6). By construction, the
private key is the one matching with the public key
(pksp) that the consumer possesses since Step (0), so
it must be the key that is able to decrypt the work.
Any observer is able to read the service provider’s
private key, so they could theoretically decrypt the
work. This is why we sent it over a secured channel.
Moreover, the Blockchain is never used to store the
data itself, so outsiders have no use for this key.

(11’): finally, the service provider receives their wage
from the smart contract since the keys matched.

V. SECURITY PROOF

A. Fair compensation

Theorem V.1. The service providers always receive their
wage if the customers obtain their work.

Proof. We consider each situation which would be unfair
for the service provider.

Case 1: the customer cannot decrypt the work before the
atomic exchange. The customer doesn’t have sksp, the key
that would decrypt the work. They have pksp, the key
that encrypted the work, but it cannot decrypt it since
we use asymmetrical cryptography.

Case 2: If the customer pays less than the agreed amount,
it cannot decode the work. If the customer pays less, the
condition for Step (8) will not hold, and the transaction
will stop.

Case 3: the service provider always receives currencies
after they disclose their secret key . The first part of the
smart contract is engaged before pushing the secret key

to decrypt the work: the customer must have sent the
money, as well as the public key of the transaction to
identify the work. We assume that the service provider
will never send a private key (sksp) that does not match
the public one, since it would abort the transaction,
which would only be prejudicial for themselves.

Theorem V.2. If the customers spend the wage, they receive
a SLA compliant work.

Proof. We split the proof in
Property 1: The service provider cannot send encrypted

work that is not SLA compliant. If the verifier generates
a stamp, the work must be SLA compliant, else the
stamp would not be generated by the verifier. Besides,
the stamp contains the signature of the hash of the
encrypted work. Thus, the customer can verify that the
stamp corresponds to the encryption of the same work
(w) when receiving w′.

The service provider cannot generate a fake stamp,
since it has no access to the private key skc, and we
assume that the verifier is opaque (A6).

Property 2: If the customer sends currencies, it is able to
decrypt the work that has been sent. With Property 1, we
know that the encrypted work is SLA compliant.

The customer publishes pksp in the Blockchain, and
provisions the wage associated with the transaction. The
service provider will receive the money only if they
published sksp, and if sksp is the private key that pairs
with pksp. If not, then the contract is cancelled and the
money is returned to the customer. The Blockchain is im-
mutable, so they cannot tamper with the smart contract’s
code (A13). Plus, neither the servider provider’s work
sent in Step (6), nor pksp can be changed by the service
provider. Thus, the customer will receive eventually sksp
and will be able to decode the work.

B. Protection from outsiders
Theorem V.3. Both the customer and the service provider
are protected from outsiders, i.e. outsiders cannot learn any
knowledge that the actors did not intend to disclose.

Proof. We assume that there is an attacker that knows
who the customer and the service provider are. They
have two attack vectors: network communications, and
data available on the Blockchain.

Case 1: Attackers steal information from network com-
munications. The customer and the service provider ex-
change everything through a secure channel (A9).

Case 2: Attackers steal information on the Blockchain.
An attacker may acquire the secret key sksp from the
Blockchain, as well as the public key pksp. However,
w′ is not accessible in the Blockchain, and has been
transmitted from the service provider to the customer
through the secure channel. Thus, the keys are useless
to decode the work.

Besides, an attacker cannot acquire the money of the
customer before the service provider. For this purpose,

it must publish the secret key sksp, that it doesn’t have.
Moreover, A8 states that actors use a different disposable
key pair for each transaction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a solution that tackles the
fair exchange of digital services where a customer del-
egates the completion of a service to a service provider
in accordance with existing specifications. We do not
rely on a trusted third party but instead use a public
Blockchain as a neutral intermediary, and the properties
of smart contracts to trade currencies for data atomically.
Compared to related work, our solution does not pre-
sume that the traded file is known in advance, and only
that it matches some specifications. We do not reveal
part of the data during the transaction, and do not rely
on complex zero-knowledge proofs. Plus, the cost of the
transaction is constant, and does not depend on the size
of the traded file.

In the future, we plan to generalize our model to
multi-party transactions, not just transactions involving
two parties. Chaining the smart contracts for all the
parties may be challenging, particularly when using
an unreliable communication infrastructure. Finally, we
expect to exploit the Lightning Network to reduce the
cost of using the Blockchain. More specifically, we would
reduce the cost of the transaction by using the Blockchain
only at initialization, and when a dispute has to be
settled.

ACKNOWLEDGMENTS

This project has been made possible in part by a grant
from the Cisco University Research Program Fund, an
advised fund of Silicon Valley Foundation (grant number
1318167).

REFERENCES

[1] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes, “SLA-driven
governance for RESTful systems,” in International Conference on
Service-Oriented Computing (ICSOC), 2017, pp. 352–356.

[2] H. Pagnia and F. C. Gärtner, “On the impossibility of fair ex-
change without a trusted third party,” Darmstadt University of
Technology, Technical Report TUD-BS-1999-02, 1999.

[7] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo,
“Zero-Knowledge Contingent Payments Revisited: Attacks and
Payments for Services,” in SIGSAC Conference on Computer and
Communications Security (CCS). Dallas Texas USA: ACM, Oct.
2017, pp. 229–243.

[3] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, “A
Blockchain based Witness Model for Trustworthy Cloud Service
Level Agreement Enforcement,” in INFOCOM. Paris, France:
IEEE, Apr. 2019, pp. 1567–1575.

[4] A. Küpçü and A. Lysyanskaya, “Usable optimistic fair exchange,”
Computer Networks, vol. 56, no. 1, pp. 50–63, 2012, publisher:
Elsevier.

[5] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and
J. Herrera-Joancomartı́, “A fair protocol for data trading based
on Bitcoin transactions,” Future Generation Computer Systems, vol.
107, pp. 832–840, 2020, publisher: Elsevier.

[6] X. Ma, F. Zhang, X. Chen, and J. Shen, “Privacy preserving
multi-party computation delegation for deep learning in cloud
computing,” Information Sciences, vol. 459, pp. 103–116, 2018,
publisher: Elsevier.

[8] C. Dannen, Introducing Ethereum and Solidity, 1st ed. USA: Apress,
2017.

[9] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[10] C. Killer, B. Rodrigues, R. Matile, E. Scheid, and B. Stiller, “De-
sign and implementation of cast-as-intended verifiability for a
blockchain-based voting system,” in Symposium on Applied Com-
puting (SAC). Brno Czech Republic: ACM, Mar. 2020, pp. 286–293.

[11] L. Eckey, S. Faust, and B. Schlosser, “OptiSwap: Fast Optimistic
Fair Exchange.” IACR Cryptol. ePrint Arch., vol. 2019, p. 1330, 2019.

[12] S.-w. ZHENG and L. FAN, “Credit Model based on P2P Electronic
Cash System Bitcoin [J],” Information Security and Communications
Privacy, vol. 3, p. 040, 2012.

[13] S. Dziembowski, L. Eckey, and S. Faust, “FairSwap: How To Fairly
Exchange Digital Goods,” in SIGSAC Conference on Computer and
Communications Security. Toronto Canada: ACM, Jan. 2018, pp.
967–984.

[14] J. Teutsch and C. Reitwießner, “A scalable verification solution
for blockchains,” arXiv preprint arXiv:1908.04756, 2019.

[15] B. A. Forouzan, Cryptography & network security. McGraw-Hill,
Inc., 2007.

[16] M. Stocker, O. Zimmermann, U. Zdun, D. Lübke, and C. Pautasso,
“Interface Quality Patterns: Communicating and Improving the
Quality of Microservices APIs,” in European Conference on Pattern
Languages of Programs (EuroPLoP). Irsee Germany: ACM, Jul.
2018, pp. 1–16.

[17] J. Bradley, B. Campbell, T. Lodderstedt, and N. Sakimura, “OAuth
2.0 Mutual-TLS Client Authentication and Certificate-Bound Ac-
cess Tokens,” IETF, Tech. Rep. rfc8705, 2020.

[18] N. Sadhasivam, R. Balamurugan, and M. Pandi, “Cancer Diag-
nosis Epigenomics Scientific Workflow Scheduling in the Cloud
Computing Environment Using an Improved PSO Algorithm,”
Asian Pacific journal of cancer prevention: APJCP, vol. 19, no. 1, p.
243, 2018.

[19] P. Maechling and et al., Workflows for e-Science. Springer, 2007, ch.
SCEC CyberShake workflows—automating probabilistic seismic
hazard analysis calculations, pp. 143–163.

[20] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner, “Code obfuscation against symbolic execution
attacks,” in Annual Conference on Computer Security Applications
(ACSA). ACM, 2016, pp. 189–200.

