
Scalable Backup Configurations Creation
for IP Fast Reroute

Shohei Kamamura, Takashi Miyamura, Cristel Pelsser, Ichiro Inoue, and Kohei Shiomoto
NTT Network Service Systems Laboratories, NTT Corporation

9-11, Midori-Cho 3-Chome Musashino-Shi, Tokyo 180-8585 Japan.
Email: {kamamura.shohei, miyamura.takashi, pelsser.cristel, inoue.ichiro, shiomoto.kohei}@lab.ntt.co.jp

Abstract—IP Fast Reroute techniques have been proposed to
achieve fast failure recovery in just a few milliseconds. The
basic idea of IP Fast Reroute is to reduce recovery time after
failure by precomputing backup routes. A multiple routing
configurations (MRC) algorithm has been proposed for obtaining
IP Fast Reroute. MRC prepares backup configurations, which
are used for finding a detour route after failures. However, this
current algorithm requires too many backup configurations to
recover from failures. We propose a new backup configuration
computation algorithm for reducing configurations as much as
possible. The basic idea is to construct a spanning tree excluding
failure links in each backup configuration. We show that the
effectiveness of our algorithm is especially high in large-scale
power-law networks.

I. INTRODUCTION

Link-state routing protocols, such as Open Shortest Path
First (OSPF) [1], have been widely used for intra-domain
routing resolution, but a few seconds are required to find
alternate routes after failure occurrence [5]. This recovery
time is too long to achieve robustness for the increasing
number of multimedia applications. The failure recovery pro-
cesses of link-state routing protocols mainly consist of 1)
failure detection, 2) link-state flooding, and 3) backup routes
computation. These processes have recently been improved.
Bidirectional Forwarding Detection (BFD) can be used for fast
failure detection [2]. Fast link-state flooding approach [3] and
implementation of incremental SPF algorithm, which reduces
the backup routes computation complexity, is proposed [4].
However, concerning 2 and 3, this is still not enough in large-
scale networks because above approaches, whose processes are
done after failures, depend on the network size. To achieve
robustness in IP networks, fast failure recovery techniques
which do not depend on the network size are required.

IP Fast Reroute techniques have been extensively studied
for fast failure recovery in just a few milliseconds [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]. The basic idea of IP Fast
Reroute is to reduce recovery time after failure occurrence
by precomputing the backup routes. The multiple routing
configurations (MRC) method has been proposed for IP Fast
Rerouting [5], [6], [7], [8]. The MRC method prepares backup
configurations, which are precomputed and used for finding a
detour route after failures. In a backup configuration, some
links are assigned a higher metric value. Such links are called
isolated links. The isolated links can be regarded as protected
links. They are not used to forward the traffic when a resource

Fig. 1. Overview of backup configuration

fails. An arbitrary link is an isolated link in at least one backup
configuration. Therefore, we can achieve fast recovery against
any single failure using backup configurations.

In this paper, we define the new backup configuration-
computation problem for minimizing the number of config-
urations. The number of the routing tables kept on a router is
proportional to the number of backup configurations; therefore,
minimization is needed to ensure scalability. We propose
a new backup configuration-creation algorithm for reducing
configurations as much as possible. Our proposed method
is used to achieve robustness and scalability. The key point
of our algorithm is that each of the backup configurations
is made so that the topology, excluding the isolated links,
becomes a spanning tree. Our evaluation results show that the
effectiveness of our algorithm is especially high in large-scale
power-law networks.

The rest of the paper is organized as follows. In Section
II, we provide the characteristics of backup configurations.
We describe IP Fast Rerouting using backup configurations,
and then define the problem. In Section III, the issues of
current algorithms and our new backup configurations-creation
algorithm is presented. Our evaluation results are shown in
Section IV, and related work is presented in Section V. Finally,
we conclude our discussion in Section VI.

312978-1-4244-5048-0/09/$26.00 c©2009 IEEE

Fig. 2. (a) Example where conventional algorithm with parameter N=3 cannot
provide backup configurations that protect all components. (b) Example where
our proposed algorithm creates backup configurations for N=3.

II. MULTIPLE ROUTING CONFIGURATIONS

In this section, we describe the characteristics of backup
configurations used with the MRC method. We introduce IP
Fast Rerouting using backup configurations. We then state our
problem.

A. Overview of Backup Configurations

The characteristics of backup configurations defined by
Kvalbein et al. [5] are as follows (Fig. 1). A backup configu-
ration consists of normal links, isolated links, restricted links,
and normal and isolated nodes. An isolated link is a link that
may fail, and a restricted link is a link that can be used only
as the last hop. The metric of an isolated link is set to the
maximum value provided by the link-state routing protocol,
and the metric of a restricted link is set to a large value,
though it is not the maximum value [5]. An isolated node is
a node that is only connected to isolated and restricted links.
Therefore, backup configurations should satisfy the following
characteristics.

1) Each backup configuration is a connected graph that
does not contain isolated links.

2) The union of isolated nodes and links of all backup
configurations correspond to the original topology.

3) Among the links that are connected to an isolated node,
at least one is a restricted link, and the others are isolated
links. The opposing node of a restricted link must not
be an isolated node in the same backup configuration.

If backup configurations satisfy the above conditions, an
arbitrary link is an isolated link in at least one backup
configuration. In addition, if a link failure is caused by an
opposing node failure, the links that are connected with the

failed node are not used except when the failed node is the
destination node. This is because the failed node is the isolated
node. This node is only connected to isolated and restricted
links. Therefore, the detour route determined by the backup
configuration avoids the isolated node. Thus, for each single
failure there is a backup configuration that avoids the failed
components.

B. IP Fast Reroute using Backup Configurations

IP Fast Reroute can be achieved by using backup config-
urations [5]. Each backup configuration is precomputed and
installed in all routers. Each router computes the shortest
path and then creates the routing entries (relationship between
destination IP address and next hop node) based on the original
configuration, and for each backup configuration. If the router
detects a link failure, it searches the backup configuration
that isolates the link corresponding to the failed link. Next,
the identifier of the selected backup configuration is marked
in the type of service (ToS) field of the IP header. After
marking, the failure-detecting router forwards the packets to
the next hop node according to the routing entry of the selected
backup configuration. Other routers can forward the IP packets
according to the same backup configuration by referring to the
ToS field.

C. Problem Statement

The problem we want to solve is to minimize the number of
backup configurations while all nodes and links are isolated.
The total number of backup configurations is an important
factor in terms of scalability. Requiring too many backup
configurations consumes a lot of router resources. This is
because the number of the routing tables kept on a router
is proportional to the number of backup configurations. If the
number of routing entries exceeds the upper limit of the router,
fast recovery cannot take place for certain arbitrary single
failures because all backup configurations cannot be installed
in the router. Therefore, minimizing the number of backup
configurations to reduce routing entries is needed to ensure
scalability.

III. SCALABLE BACKUP CONFIGURATIONS CREATION

(SBC2)

A. The Issues of Existing Algorithms

Kvalbein et al. proposed a backup configuration computa-
tion algorithm that ensures failure recovery under a point of a
single node or link failure [5]. First, the number of backup
configurations N is determined, then each configuration is
created as follows. The original set of metrics is copied from
backup configuration #1 to #N, then the target node to be
isolated in the target configuration (#1) is determined. More
precisely, if node 1 is isolated in backup configuration #i, one
link connected with node 1 is restricted, and the other links
connected with it are isolated. Then, backup configuration #i+1
is selected as the target configuration. The restricted link and
its opposing node, in backup configuration #i, are isolated in
priority in backup configuration #i+1. If a node is isolated

3132009 7th International Workshop on the Design of Reliable Communication Networks

Fig. 3. Key idea of our algorithm. Spanning tree is created from topology. Backup configuration is created from spanning tree. The links, which are removed
to create the spanning tree, become isolated links. The links, which are connected to the leaf node, become restricted links. The leaf nodes become isolated
nodes.

in backup configuration #N, the next target configuration is
backup configuration #1. This process is continued until every
node is isolated in at least one backup configuration. This
algorithm guarantees that all links are isolated when all nodes
are isolated.

Even if this algorithm isolates all the components in at least
one configuration, the following issues still remain.

1) This algorithm cannot handle multiple failures.
2) The length and thus the required link capacity of the

detour route increases compared to the OSPF detour
route. The detour route is not along the optimal (shortest)
path.

3) This algorithm requires an extension of the standard pro-
tocol because the identifier of the backup configuration
needs to be advertised to other routers.

4) The routers need to maintain a large number of backup
configurations, and additional resources for these con-
figurations are also needed.

There were a few approaches to solve issues 1- 3. Hansen
et al. proposed a backup configuration computation algorithm
considering multiple failures [6]. Kvalbein et al. reduced
the length of the detour paths by optimizing the metrics in
backup configurations [7]. Psenak et al. and Przygienda et
al. are standardizing protocol extensions for IP Fast Reroute
techniques using backup configurations [15], [16].

However, concerning issue 4, Kvalbein et al. do not take
into account the minimization of the number of backup con-
figurations [5]. Figure 2 illustrates this problem. In Fig. 2 (a),
backup configurations are created according to the algorithm
proposed by Kvalbein et al. [5] with parameter N=3. After
node 5 and link 5-6 are isolated in configuration #3, link 4-
5 has to be isolated. However, link 4-5 cannot be isolated
in configuration #1 because the resulting topology, excluding
the already isolated links and link 4-5, is not connected.
Then, configurations #2 and #3 are selected; however, link
4-5 cannot be isolated in these configurations for the same
reason. Therefore, more than four backup configurations are
needed. (The case where parameter N=4 is illustrated in Fig.
1). In Fig. 2 (b), on the other hand, if isolated links and nodes
are optimally placed, the number of backup configurations
N can be reduced to 3. That is, the algorithm proposed by

Fig. 4. Overview of our algorithm.

Kvalbein et al. is not optimal in terms of the number of backup
configurations. Cicic et al. proposed an algorithm to reduce the
number of backup configurations [8]. However, their algorithm
does not isolate all links, so another information table for fast
recovery is needed.

B. Overview of SBC2

The algorithm proposed by Kvalbein et al. [5] has a simple
computation process and ensures that all nodes and links are
isolated by placing them to each backup configuration cycli-
cally. However, this mechanism generates too many backup
configurations. The above cyclical strategy renders the efficient
placement of isolated nodes and links difficult. Our strategy,
therefore, is to generate backup configurations by the unit.
Each backup configuration maximizes the number of isolated
nodes and links. Multiple backup configurations, which have
this characteristic, are generated. The best combination, which
minimizes the number of backup configurations, is selected.

The key point of our algorithm is that each backup con-
figuration is made so that the topology, excluding the iso-
lated links, becomes a spanning tree (Fig. 3). This process

314 2009 7th International Workshop on the Design of Reliable Communication Networks

TABLE I
NOTATION

p Identifier of backup configurations

n index number

G graph

V (G) set of all vertices in G

E(G) set of all edges in G

Worg(e) original metric of link e in graph G

W (p, e) metric of link e in backup configuration p

W n
mst(p, e) weight of link e for creating spanning tree in p

Wr metric of restricted links (high value)

MST n(p) minimum spanning tree of G based on W n
mst(p, e)

RAND() returns random value from Wmin to Wmax

COPY(X) returns a copy of X

DEL ELEMENT(x, X) delete element x from set X

NEW ISOLATED(T) number of new isolated node(link) by tree T

maximizes the number of isolated nodes and links on one
configuration. We do not evaluate all the combinations of
spanning tree in order to minimize the number of backup
configurations, which is not efficient. Our algorithm is efficient
because the search space is limited by changing the non-
isolated nodes and links into the isolated ones in priority in
the next spanning tree.

Figure 4 shows an overview of our algorithm. The processes
in steps 1 and 2 are the key points shown in Fig. 3. The
process in step 3 checks the end condition. If all nodes and
links are isolated, a set of backup configurations is produced.
The process in step 4 determines the set of weights to create
the next optimal spanning tree. This process needs N iterations.
For the performance gain, the M iteration can be applied to
our algorithm in step 5. In the next section, we describe our
algorithm in detail.

C. Algorithm

Our algorithm automatically creates backup configurations
from an undirected weighted graph, G. The details of our
algorithm are shown in Table 2, using the notation shown in
Table 1. First, parameters are initialized (line 1-5), and a set
of link weights are determined randomly (line 4). It should
be noted that the set of weights to create the spanning tree
is different from the set of metrics configured on the backup
configurations. The following process is continued until the set
of backup configurations that satisfy the characteristics shown
in Section II-A are created (line 6-37).

The spanning tree is created based on a set of given
weights, and then one backup configuration is created from
this spanning tree (line 7-16). We create a minimum spanning
tree by the Kruskal algorithm [18]. A minimum spanning tree
is a spanning tree whose summation of the link weights is
minimal. Therefore, the links with a higher weight tend to
be removed at the time of creating the spanning tree. The
leaf nodes in the spanning tree become isolated nodes (line
8-10). The links, which are removed to create the spanning
tree, become the isolated links (line 11-13). The links, which

TABLE II
SBC2 ALGORITHM

1 p ⇐ 0, optid ⇐ 0 /* optid is ID of optimal set of weights */

2 for all e ∈ E(G) do

3 W (p, e) ⇐ Worg(e)

4 W
optid
mst (p, e) ⇐ RAND()

5 G′=COPY(G)

6 while (1) {

7 T ⇐ MST optid(p)

8 for all v ∈ V (T) do

9 if (v is leafnode) then /* search the isolated node */

10 DEL ELEMENT(v, V (G′))

11 for all e ∈ E(G) ∩ E(T) do /* search the isolated link */

12 W (p, e) ⇐ ∞

13 DEL ELEMENT(e, E(G′))

14 for all e ∈ E(T) do /* search the restricted link */

15 if (e is connected with leaf node) then

16 W (p, e) ⇐ Wr

17 p + +

18 for all e ∈ E(G) do /* initialize the next metrics */

19 W (p, e) ⇐ Worg(e)

20 if (G′ == Ø) then

21 end

22 if (G′ satisfy backup configuration condition) then

23 create W (p, e) based on G′ (all member of G’ are isolated)

24 end

25 else /* create N sets of weights, then select best set */

26 for (n = 0, newoptid = 0; n < N ; n + +) do

27 for all e ∈ E(G) do

28 W n
mst(p, e) ⇐ W

optid
mst (p − 1, e)

29 if (W (p − 1, e) �= ∞) then

30 W n
mst(p, e)+ = RAND()

31 for all e connected with arbitrary node v ∈ V (G′) do

32 weight of one link is set to low value,

and weight of the other links is set to a high value

33 T n ⇐ MST n(p)

34 if (n ≥ 1 and

(NEW ISOLATED(T n) ≥ NEW ISOLATED(T newoptid))

35 newoptid ⇐ n

36 optid ⇐ newoptid

37 }

are connected to the leaf nodes in the spanning tree, become
the restricted links (line14-16).

The end of our algorithm is evaluated (line 20-24). Our
algorithm maintains a graph, G’, which consists of non-
isolated links and nodes. If G’ is empty, our algorithm finishes
(line 21), or if a backup configuration whose isolated nodes
and links are all elements in G’ can be created, our algorithm
creates such a backup configuration and finishes (line 24).

If the end is not satisfactory, our algorithm sets the weights
of the spanning tree to produce the next backup configuration
(line 26-36), and N sets of weights are created (line 26).
With each new set of weights, we try to isolate the non-
isolated nodes and links in priority; therefore, we apply the
characteristics of the Kruskal algorithm to our algorithm. First

3152009 7th International Workshop on the Design of Reliable Communication Networks

Fig. 5. Example of our algorithm. (a) shows the processes in line 29-30 of
Table 2. (b) shows the processes in line 31-32 of Table 2.

the weights of the non-isolated links in the previous backup
configuration are increased by a random value (line 30). This
process isolates non-isolated links. Next, the weight of one link
connected with a non-isolated node is randomly selected and is
set to a lower value, and the weights of other links connected
with it are set to a higher value (line 32). This process ensures
that the non-isolated node becomes a leaf node in the spanning
tree. Figure 5 shows the examples of these processes. The
best set, which has the most new isolated nodes and links, is
selected (line 34-36), and then the process starts again from
the backup configuration creation (line 7).

In our algorithm, the form of the first spanning tree is deter-
mined by a random set of weights (line 4). This set of weights
affects the generation of the following spanning trees that
isolate the non-isolated components (links or nodes). However,
sometimes this first set is not appropriate for generating
the following set. Therefore, we iterate our algorithm with
different initial sets of weights. Then, the best combination of
backup configurations, whose number is minimal, is selected.
Thus, the iteration avoids a fixed first spanning tree.

D. Termination

Our algorithm continues until all nodes and links are
isolated in at least one backup configuration. As previously
mentioned, the links, which are removed to create the spanning
tree, become isolated links. Moreover, the leaf nodes in the
spanning tree become isolated nodes. The process in line 30
ensures that the target links are isolated by increasing their
weight value. Next the process in line 32 ensures that a target
node is isolated by manipulating the link weights connected
with it. Because of lines 30 and 32, at each step of a while
loop, at least one link or node is isolated. Thus, the maximum
number of while loops is |V (G)| + |E(G)|.

IV. PERFORMANCE EVALUATION

In this section we demonstrate the effectiveness of our
algorithm through extensive simulation.

A. Aims and Simulation Conditions

We describe the aims of our evaluation and simulation
conditions. First we show that our algorithm reduces the

number of backup configurations compared to the the current
algorithm [5] in various types of topologies. In addition,
we discuss the available resources and computations of our
algorithm.

In our evaluation, we use two different topology models in
terms of node-degree. The node-degree expresses the number
of links connected to a node. One model is the Waxman model
whose node-degree is relatively uniform on each node. The
other model is the Barabasi-Albert (BA) model whose node
degree follows a power-law. In power-law network, most nodes
have a small number of links while a small portion of nodes
have a large number of links. We created 20 instances of
topologies for each of these two models using the BRITE
topology generation tool [19]. Although router-level topologies
are with higher node degree [20], our evaluation conditions as-
sume the POP (Point Of Presence) level networks. Therefore,
the average node degree da is set to two (nodes have four links
on average.), and calculated as follows:

da = |E|/|V | (1)

|V | is the total number of nodes and |E| is the total number
of edges. The number of nodes in these topologies ranges
from 20 to 200 because maximum number of nodes in the
intra-domain is assumed to be about 200 [21]. An evaluation
index is the maximum number of backup configurations. The
parameters of our algorithm was set such that there are 20
iterations (M=20) and N=5 (Table 2 line 26).

B. Effectiveness of SBC2

Figure 6 shows the results for the Waxman model, and Fig.
7 shows the results for the BA model. These results suggest
that the number of backup configurations of our algorithm
never exceed the number of configurations obtained with the
current algorithm [5]. There was a reduction of up to 56% for
the 200 nodes with the BA model while there was a reduction
of up to 28% for the 200 nodes with the Waxman model. The
results mean that with the BA model, our algorithm is more
effective. For example, 56% reduction of configurations means
the 56% reduction of routing entries in each router.

Moreover, the amount of reduction increases as the number
of nodes increase. This is due to the distribution of the
node-degree in the topology. As described in Section III.
A, the number of configurations that are generated by the
current algorithm [5] increases when the topology has a lot
of nodes with low node-degree. The current algorithm [5]
ensures that the links and nodes, which could not be isolated in
configuration #i, are isolated in configuration #i+1 in priority.
That is, isolated links are placed at the neighboring position
in backup configuration #i and #i+1 (Fig.2 (a)). Consequently,
the topology excluding the isolated links in these backup
configurations becomes the sparse topology in local range, and
then a new isolated link cannot be placed in such a range.
Therefore, another backup configuration is required. If the
number of nodes increases in the BA model, the ratio of nodes
with low node-degree also increases. Therefore, the number
of configurations that are generated by the current algorithm

316 2009 7th International Workshop on the Design of Reliable Communication Networks

increases. In contrast, our algorithm, which generates the
backup configuration by the unit of itself, absorbs the effect
of the distribution of node-degree.

Next we discuss the available resources in backup configu-
rations. Figure 8 shows the average ratio Ra of available links
to all links in backup configurations. Although Ra decreases
about 50%, the dependency to the network size is low. We
explain this reason by the formulation. The set of links Er,
which are removed from the connected graph to create the
spanning tree, is described as follows [22]:

|Er| = |E| − |V | + 1 (2)

Then, Ra is given by the following equation:

Ra =
|E| − |Er|

|E|

=
|E| − (|E| − |V | + 1)

|E|

=
|V | − 1

|E|

=
1

da

−
1

|E|
(3)

Ra →
1

da

, (N → ∞, E → ∞) (4)

By (3), we found that the value of da is dominant. By (4),
if E becomes infinity, Er converges on the reciprocal of da.
Therefore, Ra mainly depends on the average node-degree in
large networks. It is important that the backup routes, which
are calculated by backup configuration, are used only traffic
reaching failure. The traffic that does not use failure resources
is forwarded according to the original configuration. Moreover,
these routes are only used until backup routes by link-state
protocols are calculated. Therefore, the impact of available
resources reduction is low.

Finally we evaluated the computation time of our algorithm.
The time for 20 iterations of our algorithm was about 133
seconds for 200 nodes using a C++ program on Xeon 2.9 GHz
PC with 128 GBytes of memory. Although the computation
time increases in proportion to the number of iteration times,
the number of backup configurations converges in 20 iterations
under all conditions. Our algorithm is relatively complex
compared to the more simple current algorithm [5], but it is
reasonable to suggest that this tendency of computation time,
which should be computed offline, is acceptable.

V. RELATED WORK

Some IP Fast Reroute techniques, which do not require
backup configurations, have been proposed [9], [10], [11],
[12], [13], [14]. In this section, we summarize these tech-
niques.

Basic IP Fast Reroute techniques, which do not require
extensions to existing link-state routing protocols to set the
proper link metrics, have been proposed [9], [10]. Equal Cost
Multi Paths (ECMP), paths whose length is based on the link

Fig. 6. Number of backup configurations in Waxman model .The average
node degree is 2.

Fig. 7. Number of backup configurations in Barabasi-Albert(BA) model .The
average node degree is 2.

metrics is the same, are used to forward the IP packets [9].
IP packets are distributed on each path according to a hash
value based on their IP address or port number. Even if a link
failure occurs on one route, the computation of the detour
routes is not needed because other living routes can be used
as detour routes. A loop free alternate (LFA) approach was
proposed [10]. The node, which detects a failure, forwards the
IP packets to the node called LFA, which is not the original
next hop. The link metrics are set so that the route from LFA
to the destination node does not include detecting the failure
node. Therefore, routing loops never occur. The drawback of
these techniques is that they cannot handle a single failure in
an arbitrary form of the topology because the routes based on
link metrics depend on the topology [17].

Nelakuditi et al. [11] proposed an IP Fast Reroute technique
called failure insensitive routing (FIR). The key point of
FIR is that a failure point is estimated from the relationship
between the destination IP address and the incoming interface.

3172009 7th International Workshop on the Design of Reliable Communication Networks

Fig. 8. The average ratio Ra of available links to all links in BA model.

If packets are received on an irregular interface, which is
connected with the next hop node on the shortest path to the
destination, the router interprets that a failure has occurred on
the shortest path. The advantage of this estimating approach
is that there is no need to advertise the failure point. However,
FIR cannot handle the arbitrary multiple failures. FIR is
extended to handle the node failure [12], and to work on the
inter-domain environment [13].

A not-via address approach was proposed [14]. In this
approach, IP packets are encapsulated, and a header is added
to the packet. This header contains the not-via address. The
encapsulated packets detour the failure points because the
route for not-via address is precomputed to avoid the failure
points. First, a failure detecting node encapsulates the IP
packets to give the not-via address. All nodes forward the
packets according to the not-via address. If these packets arrive
at nodes located downstream of the failure points, the header
with the not-via address is removed and then the IP packets
are forwarded according to the original destination address.
The detour route can be calculated flexibly with respect to
each not-via address, but routers need to maintain the next
hop according to the not-via addresses.

VI. CONCLUDING REMARKS

We argued that minimization of backup configurations to
reduce the routing entries is needed to ensure scalability. We
presented a new backup configurations computation algorithm
that reduces the number of backup configurations. Our algo-
rithm has a high feasibility on the existing IP Fast Reroute
framework. We demonstrated its effectiveness through an ex-
tensive simulation study. The results showed that our algorithm
reduced the number of backup configurations independent of
the form of network topologies. For large power-law networks,
our algorithm reduced the number of configurations by about
56% compared to the current algorithm. The effectiveness
of our proposed algorithm increases as the number of nodes
increases. Therefore, our algorithm is much more effective on
large scale networks than the current algorithm.

Our spanning tree based algorithm has feasibility to isolate
arbitrary links by link weights manipulation. Therefore, as
further works, we will consider correlated failures recovery
like SRLG (Share Risk Link Group) failures, and optimization
of backup routes considering network load information as the
weights to create the spanning tree.

REFERENCES

[1] IETF RFC2328:“OSPF Version 2,” April 1998.
[2] D. Katz and D. Ward. Bidirectional Forwarding Detection. Internet draft,

draft-ietf-bfd-base-09.txt, work in progress, Feb 2009.
[3] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-

second IGP convergence in large IP networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 35, no. 2, pp. 35 - 44, July 2005.

[4] Daniele Frigioni, Alberto Marchetti-Spaccamela, Umberto
Nanni,“Incremental algorithms for the single-source shortest path
problem ,” Proceedings of the 14th Conference on Foundations of
Software Technology and Theoretical Computer Science, Vol.880, pp.
113-124, 1994.

[5] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP
Network Recovery using Multiple Routing Configurations,” in Proceed-
ings of INFOCOM, Apr.2006.

[6] A. F. Hansen, O. Lysne, T. Cicic, S. Gjessing, “Fast Proactive recovery
from Concurrent Failures,” In Proceedings IEEE International Conference
on Communications, ICC 2007, June 2007.

[7] A. Kvalbein, T. Cicic and S. Gjessing, “Post-Failure Routing Performance
with Multiple Routing Configurations,” INFOCOM, May 2007.

[8] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin, and M.
Menth, “Relaxed Multiple Routing Configurations for IP Fast Reroute,”
In IEEE/IFIP Network Operations and Management Symposium 2008.

[9] IETF RFC2991:“Multipath Issues,” Nov 2000.
[10] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-free

alternates, ” IETF internet Draft, 2005, draft-ietf-rtgwg-ipfrr-spec-base-
04.txt

[11] S. Nelakuditi, et al., “Failure Insensitive Routing for Ensuring Service
Availability,” IW QoS’, June 2003.

[12] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,
“Failure inferencing based fast rerouting for handling transient link and
node failures,” in Proceedings of IEEE Global Internet, vol. 4, Mar. 2005.

[13] J. Wang, and S. Nelakuditi, “IP Fast Reroute with Failure Inferencing,”
In Proceedings of INM’07, The 5-9’s Workshop at ACM SIGCOMM,
August 2007.

[14] draft-bryant-shand-IPFRR-notviaaddresses-02.txt.
[15] P. Psenak, S. Mirtorabi, A.Roy, L. Nguen, and P. Pillay-Esnault, “MT-

OSPF: Multi topology (MT) routing in OSPF,” IETF, RFC4915, June
2007.

[16] T. Przygienda, N. Shen, and N. Sheth, “M-ISIS: Multi topology (MT)
routing in IS-IS,” Internet Draft (work in progress), Oct. 2005, draft-ietf-
isis-wg-multi-topology-11.txt.

[17] M. Gjoka, V. Ram, Y. Xiaowei, “Evaluation of IP Fast Reroute Propos-
als,” COMSWARE Jan. 2007.

[18] Joseph. B. Kruskal, “On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem,” In Proceedings of the American
Mathematical Society, Vol. 7, No. 1 (Feb, 1956), pp. 48-50

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach
to universal topology generation,” in Proceedings of IEEE MASCOTS,
Aug. 2001, pp. 346-353.

[20] L.Li, D. Alderson, W. Willinger and J. Doyle, “A First Principles
Approach to Understanding the Internet’s Router-level Topology,” ACM
sigcomm 2004.

[21] Moy, J. T., “OSPF: Anatomy of an Internet Routing Protocol.,” Addison
Wesley 1998.

[22] C. Berge, The Theory of Graphs. New York: Dover Publications, 2001.

318 2009 7th International Workshop on the Design of Reliable Communication Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

