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Abstract—Prefix deaggregation is recognized as a steady long-
lived phenomenon at the interdomain level, despite its well-known
negative effects for the community. The advertisement of more-
specific prefixes provides network operators with a fine-grained
method to control the interdomain ingress traffic. Moreover,
customer networks combining this mechanism with selective
advertisements may decrease their monthly transit traffic bill
and potentially impact the business of their providers.
In this paper, we develop a methodology for Internet Service

Providers (ISPs) to monitor new occurrences of prefix deaggre-
gation within their customer base. Moreover, the ISPs can detect
on their own when deaggregation may decrease the transit bill
of their customer networks. We first examine the ISP’s BGP
routing data for new cases of prefix deaggregation generated
by customers. Then, we check for selective advertisements of
the newly generated prefixes using external routing data. We
look beyond the incentives for deploying this type of strategy
and instead we examine its economic impact. We exemplify
the proposed methodology on a complete set of data including
routing, traffic, topological and billing information provided by
a major Japanese ISP and we discuss the implications of the
obtained results.

I. INTRODUCTION

The Internet is an ever-growing and evolving ecosystem
formed through the dynamic interconnection of many inde-
pendently managed networks, also known as Autonomous
Systems (ASes). The Border Gateway Protocol (BGP) is re-
sponsible for the exchange of reachability information and the
selection of paths according to the routing policies specified
by each network. The way in which the traffic flows between
networks is influenced by the path dynamics triggered in the
evolution of the Internet topology by failures, the maintenance
of BGP sessions and, most importantly, the routing policies of
each network [1], [2], [3]. By tweaking BGP configurations,
ASes interact to coordinate the exchange of IP traffic according
to various technical and economic necessities.
One important task achieved through the use of traffic

engineering tools is the optimization of the routing function in
order to allow the ASes to shift the traffic on its incoming links
in the most effective way [1]. Address space fragmentation
offers a high granularity for incoming traffic manipulation.
This technique, also known as prefix deaggregation, allows
networks to divide their assigned address blocks in different-
sized sinks of traffic. Regardless of the strongly negative side-
effects on the scalability of the global routing system [4], [5],
[6], numerous operational reasons drive a part of the network
operators to continue employing prefix deaggregation [6].

For example, in order to achieve load balancing over differ-
ent incoming links or to attract traffic on cheaper links, ASes
may combine prefix deaggregation with selective advertise-
ments. By doing so, the corresponding incoming traffic for the
more-specific prefixes only flows through the preferred transit
provider towards the customer network. Also, by splitting their
address space and advertising the smaller blocks to different
regional providers, geographically-spread networks can divert
different amounts of traffic corresponding to different points
of presence (PoPs), thus attracting traffic into their network
through the PoP closest to the final destination [1]. To assure
the robustness of the routing system to failures, the deag-
gregating ASes usually inject, alongside the more-specifics,
the less-specific covering prefixes to all providers. This type
of behaviour is, however, costly for the provider. In addition
to the need to support an increased number of prefixes in
their routing tables, providers may also experience diminished
revenues.
In this paper, we take the point of view of an ISP and ask a

two-staged question: (1) How extensive is the use of prefix
deaggregation among the customer networks? (2) Does
deaggregation combined with selective advertisements de-
crease the transit bill?
The reasons for which networks deploy prefix deaggregation

have been extensively addressed and documented by the
research community [4], [5], [6]. Our study looks beyond the
motivations for deploying such a technique and focuses on
detecting deaggregation within a predefined time-window and
the additional possibility of economic impact on the transit
bill towards the providers.
Even if the majority of Internet routes is reportedly very

stable in time [7], Teixeira et al. show in [8] that BGP routing
changes are the main cause for the majority of the large
variations in the traffic demands. Since the transit bill depends
on the peak traffic usage and not on the total traffic usage, these
variations translate in artificially larger monthly transit bills.
Previous work [9] analytically concludes that after combin-

ing the selective advertisements with the deaggregation tech-
nique, the AS can enjoy a reduction of the traffic fluctuations
on the transit links. By inferring the routing changes from
publicly available BGP routing data, Lutu et al. conclude that
indirectly restricting the routing diversity towards a certain
destination prefix through selective advertisements of more-
specific prefixes translates into monetary savings for the
deaggregating network. Consequently, the customer network



not only acts counter to the best recommended practices, but
also may indirectly impact the business of its providers. This
economic impact is enabled by the current operational status
of the Internet, and in particular the widely used billing model
based on the peak traffic usage [10], [11].

A. Contributions
Our main contribution in this paper is the methodology

proposed to identify new cases of deaggregated prefixes by
the customers of an operational ISP within a certain time-
window. Recognizing as a reality the relatively stable usage
of prefix deaggregation as a traffic engineering method in the
Internet [6], we enable any operator with the necessary tools to
detect which are the customers which are new deaggregators
and monitor their behaviour in time.
We define strategic1 deaggregation as the action of splitting

the address block and selectively injecting each more-specific
prefix to different disjoint subsets of providers. Customers
which exhibit this behaviour may be able to game the 95th

percentile billing rule and possibly have a negative impact on
the business of their ISPs.
We propose a passive measurement approach for the de-

tection of strategic deaggregation events and assessing their
economic consequences. The novelty of the approach is the
manner in which it merges different types of information
characteristic to an ISP in order to have a complete picture
on the operations of its customer networks. This requires
obtaining and processing routing, topology, traffic and billing
information and molding it in order to reach the correct level of
understanding on the impact different customers might have on
their providers. Any ISP interested in detecting the occurrence
of this phenomena within its customer base can build the
dataset and apply the proposed methodology.
First, we use the ISP’s BGP routing data to identify cases of

prefix deaggregation among the customer networks. Second,
we verify if any of the more-specific prefixes are selectively
advertised by the customer networks. To this end, we check
all the routing information gathered from ASes that are active
monitors within the RIPE RIS [12] and RouteViews [13]
projects. Third, in order to quantify the economic impact on
the transit provider for the reported cases of strategic deaggre-
gation, we also perform the traffic analysis. To approximate
the decrease in the monthly transit bill, we require traffic data
corresponding to the strategic deaggregation approach and to
the situation prior to employing this method. On top of the
traffic information separated for the before and after cases,
we map the billing scheme used by the ISP.
Allowing the ISP to determine the deaggregation strategies

deployed may raise awareness on the operations of its own
customers. Even without the evaluation of the economic im-
pact, this can be viewed as an alarm triggered for customers
which may negatively impact the business of their provider.

1We use here the term strategic to accentuate the fact that the decision is
based on optimizing behaviour, since it might increase the benefits for the
network deploying it. This relies on definitions provided in rational choice
theory.

The ISP can further monitor their evolution regarding the level
of deaggregation deployed.
We exemplify the usage of the proposed methodology on

a complete dataset provided by a major operational ISP. The
dataset spanning a period of two months (May-June 2012)
includes BGP routing information that enable us to monitor
the dynamics of the customer address space over time. The
number of customer networks advertising new more-specific
prefixes within the period of analysis is relatively small: less
than 10% of the customer networks were actively injecting
new more-specifics within the analyzed period. After checking
the external routing data, we detect one case of strategic deag-
gregation being deployed during the analyzed time-window.
We perform the traffic data analysis for this case and we
conclude that the customer AS may enjoy a reduction of 20%
on its monthly transit bill.
The rest of the paper is structured as follows. in Section

II, we present an example to intuitively explain how prefix
deaggregation can impact the transit bill. In Section III, the toy
example is properly formalized in the general Internet model.
The methodology for detecting cases of the deaggregation
is proposed in Section IV. In Section V we describe the
dataset which we use for exemplifying the use of the proposed
methodology and discuss the results obtained. In Section VI
we present our conclusions and discuss future work.

II. TOY EXAMPLE

We introduce next a toy example to illustrate how a network
changing its strategy from non-deaggregation to deaggregation
can benefit from a decreased transit traffic bill, thus possibly
impacting the revenues of its providers. For simplicity, let
us consider the case of a network buying transit from two
different providers, as in the scenario depicted in Figure 1.
We first analyze what happens with the traffic on the two

different transit links before the customer deploys the deag-
gregation strategy. Let us assume that the destination network
is advertising the same prefix 1.1.0.0/16 over two different
transit links, corresponding to the initial non-deaggregation
behaviour represented in Figure 2.a. We limit the number of
traffic sources at two, out of which one is generating 3

4
of the

whole traffic demand T (the “three quarters“ source) and the
other one, the rest (the “one quarter“ source). Assuming the
use of the 95th percentile pricing model, in which the monthly
bill is the function of the peak level of traffic, we monitor the
level of traffic on each link during one month. We consider
that the “three quarters“ source is sending its traffic on link l1
for more than 5% of the period, after which, due to a routing
change, it starts forwarding its traffic on link l2. The “one
quarter“ source suffers the opposite events, namely it switches
from link l2 to link l1 for more than 5% of the billing period.
As a result, because the traffic on each transit link has a level
of 3T

4
for more than 5% of the billing period, the chargeable

amount of traffic for each provider is 3T
4
. Assuming c is the

cost per unit of transit traffic, the total cost payed for the
transited traffic T is c 3T

2
, which is cT

2
higher than the real

cost c ∗T . We note that even if the traffic level on link l2 has
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Fig. 1. Strategic prefix deaggregation example.
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Fig. 2. Toy example representation.

a spike of T , it does not impact the transit bill, since it last
less than 5% of the billing period.
If the destination AS deaggregates its prefix, it can avoid

the fluctuations of traffic caused by routing changes and also
the artificial augmentation in the transit traffic monthly bill.
Consider, for example, that the destination AS in Figure 2
divides its address space into two more-specific prefixes and
announces each on a separate link, as observed in Figure
2.b. This corresponds to deploying the strategic deaggregation
behaviour. If we assume uniform distribution of incoming
traffic for the prefix, each more-specific prefix now receives
half of the traffic generated by each source. Consequently, the
routing changes do not increase the 95th percentile and the
transit bill for the customer reflects the actual traffic demand.
The reasons for deploying the deaggregation strategy may

include a wide variety. For example, when analyzing the
topology from Figure 1, one reason might be the need to avoid
the capacity upgrade on the link between the Customer and
the Provider, or even the need of the Customer to receive
traffic for the more-specific locally from the Peer-Provider,
thus avoiding hauling the traffic within his own network.
Studying the motivation for employing this mechanism is,
however, out of the scope of our analysis. We focus instead
on the impact of the deaggregation strategy on the provider.
In the scenario from Figure 1, the Provider network may not
only be loosing revenue from the decrease of the transit bill.
There is also an additional cost implied by having to haul the
customer traffic through its own network towards the Peer-
Provider. Thus, by simply monitoring customers’ behaviour
and detecting the cases of strategic deaggregation, an ISP can
identify the customers who may systematically impact in a
negative way its revenues.
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Fig. 3. Graphical representation of the proposed general Internet model.
The sticky model for routing changes assumes that the sources stick to the
green path from the initial-state with a probability of 1 − p, and change to
an alternative yellow path with a probability p.

III. OVERVIEW: GENERAL INTERNET MODEL

We overview here the settings of the general Internet model
proposed for the study of the impact of prefix deaggregation on
the transit traffic bill. By combining three important elements,
i.e. the interdomain path changes, the 95th percentile billing
rule broadly used in today’s Internet and the skewed distribu-
tion of traffic demand on the source networks, the model offers
the underlying structure for the analysis of the phenomena
associated with the deaggregating strategy.
Given that in the current Internet paths are calculated

independently for each destination, we perform our analysis at
the AS-level assuming, without loss of generality, the existence
of one destination network andN sources of traffic. The model
accounts for an AS with n symmetric transit links assumed to
have the same capacity, which are accommodating traffic from
N sources. For ease of presentation, a uniform distribution of
incoming traffic on the destination address space is integrated
in the model. In the case of an uneven traffic distribution,
a correspondingly proportional prefix fragmentation can be
found so that the amounts of traffic per more-specific prefix
are comparable [9]. We first assume that the destination AS is
advertising the same prefix on all its transit links.
The initial-state set of routes at the beginning of the billing

time interval is achieved after first completing the selection
process on the available BGP paths between each source
AS towards the destination prefix. The selection process is
modeled as random, but the model can be extended to ac-
commodate any other type of process. The routing changes
are modeled using a sticky process, where a probability p
is assigned for the path changing between a source and the
destination in terms of which transit provider is used relative
to the initial-state.
The total traffic generated towards the destination is dis-

tributed among the N sources according to Zipf’s law, as
previously described in [14]. Given a ranking of the Internet
entities, the Zipf law states that the traffic generated by a
network is inversely proportional to its rank. This assumption
is consistent with the traffic measurements in [15], as the Zipf
distribution is a particular case of a power law distribution
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Fig. 4. Traffic dynamics for each transit link.
characterized by a skewness parameter α = 0.9. One may
argue that because of the large number of sources in the real
Internet, small relative fluctuations of traffic can be expected.
However, the skewness of the traffic distribution on sources has
an important effect on the amount of traffic switching between
transit links. This is justified by the fact that if a large source
of traffic becomes instable, then it shifts important amounts
of traffic between different routes, thus heavily impacting
the traffic distribution on the incoming links towards the
destination.
The traffic dynamics are captured in Figure 4, where we

can observe how during the time of analysis, traffic may shift
from one transit link to another. The routing changes imply a
shift in traffic from one transit link to another, corresponding
to the amount of traffic accommodated on the unstable source
path. Consequently, the total volume of traffic on any transit
link i,where i = 1, ..N , between the destination network and
its N providers has the following expression, which changes
at every time-slot t during the time of the analysis:

Ti(t) =
T

n
− θ−i (t) + θ+i (t), (1)

where θ−i (t) represents the traffic leaving link i and θ+i (t)
represents the expected value of the traffic shifting from the
rest of the links to link i. The expected value of the traffic is
T
n
, whilst the variation depends on the unstable amounts of

traffic, i.e. the θi(t) traffic elements from (1).
The toy example suggests that these traffic fluctuation can

be diminished by the use of prefix deaggregation combined
with selective advertisements. In other words, the θi(t) traffic
elements can be reduced to zero in the case where different
parts of the prefix are injected to each of the transit providers.
Consequently, the incoming traffic on each link is confined
to the preferred incoming link through the selective adver-
tisement. This further translates into monetary savings on the
monthly transit bill, since the charging volume of traffic is
implicitly decreased.
In the analysis on the operational Internet we focus on the

two behaviours also presented in the toy example, since here
we are bound to see the most important impact: 1) no deag-
gregation, where the address block is injected to all providers
as the same prefix and 2) strategic deaggregation, where
different parts of the prefix are injected to each of the transit
providers. Nevertheless, intermediate deaggregation strategies

may be considered, where the resulting more-specific prefixes
are injected to disjoint subsets of provider networks.
The billing method integrated in the model, i.e. the 95th

percentile billing rule, implies that the agreed billing period
is sampled using a fixed-sized window, each interval yielding
a value that denotes the traffic transferred during that period.
A recent transit cost survey [16] has shown that the price per
unit of transfered traffic, denoted here by ct, decreases with
the increase of the expected volume of transit traffic, following
a concave dependency. However, this is only true when the
increase of the expected amount of traffic is significant enough
to justify the change. The authors show in [9] that the increase
of expected traffic volume triggered by route changes does not
require a change in the commit rate. Therefore the following
linear cost function for the transit traffic is considered:

C = ct ∗ V (2)

, where V is the charging traffic volume (i.e. the 95th percentile
of the monthly traffic) of the destination AS and ct is the
corresponding transit traffic unit cost.
Consequently, the analytically derived formula for the rel-

ative monetary savings is a function of three parameters,
reflecting the unique mixture between the three main elements:
n - the number of links carrying chargeable volume of transit
traffic, α - the skewness parameter of the distribution for traffic
on sources and p - the path change probability included in the
sticky model.

IV. THE METHODOLOGY

In this paper, we propose a novel methodology to identify
new operational occurrences of more-specific prefix adver-
tisements. This enables any ISP to monitor the amount of
deaggregation generated by its customers and, in some cases,
the impact it may have on its own revenues. The methodology
is structured in three parts, each conveying relevant results
concerning deaggregation dynamics within the customer base
of an ISP. We summarize in Figure 5 the steps taken in the
proposed methodology and show which type of information is
required for each part.
Step 1: Detect new more-specific prefixes. First, we detect

ASes which change their behaviour and start using deaggrega-
tion within a predefined time-window. For this step we require
the BGP routing information from the ISP, as depicted in the
first processing block depicted in Figure 5. We further expand
on the mechanism in section IV-A.
Step 2: Detect strategic deaggregation. Second, we check

for selective advertisements of the more-specific prefixes pre-
viously identified. As depicted in the second processing block
from Figure 5, we use all the routing information from the
monitors active in the the RIPE RIS and RouteViews projects.
Step 3: Evaluate the economic impact. Third, we try to

determine if performing strategic deaggregation may lead to
additional economic benefits for the customer network. For
the cases of strategic deaggregation, we monitor the traffic
data both (i) before deaggregation, when the address block is
injected as one prefix to all providers (i.e. no deaggregation),
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Fig. 5. The methodology steps: at each step we require a different input
dataset depicted at the top of each processing block. At the bottom of each
block, we can see the results we obtain at each step.

and (ii) after the strategic deaggregation, when the address
block is fragmented into as many more-specific prefixes as
the number of transit providers and each more-specific is
selectively advertised to a different provider (i.e. strategic
deaggregation). It is important to capture both these states,
in order to be able to correctly quantify the economic impact
of strategic deaggregation. We then evaluate the transit bill
for each case and compare. This step is depicted in the third
processing block from Figure 5.
Step 3.a: Extracting the traffic data on all the links con-

necting the provider with the identified customer which is
deploying strategic deaggregation. This requires a previous
mapping between customers and transit links from the ISP.
We obtain the topology data from the router configuration files
provided by the ISP. We observe this in the first sub-block of
the third processing block in Figure 5.
Step 3.b: Finally, we move to estimating the bill for the ag-

gregated and deaggregated traffic patterns. Thus, by applying
the ISP’s billing scheme to the traffic traces, we can quantify
the impact of strategic deaggregation on the transit traffic bill.
This step is depicted in the last processing block in Figure 5.
The methodology is aimed at working with a large and

diverse collection of real data. Any ISP interested in detecting
the occurrence of this phenomena within its customer base
can build the dataset and employ the proposed methodology.
Moreover, the tools we have developed can be made available
for the research community upon request, as well as an
anonymized version of the datasets used to exemplify the
usage of the methodology.

A. Detection of Deaggregation Events
The detection algorithm we propose in Step 1 for the

identification of more-specific prefixes performs a comparative
analysis of the BGP information obtained from the ISP. As
depicted in Figure 6, the study on the dynamics of the
prefixes advertised by the customer ASes during a particular
time-window allows to separate the newly injected more-
specifics prefixes, which first started to be advertised during
the analyzed period.
We begin by choosing a reference routing table. The time-

stamp of the reference routing table represents the reference
time. The detection algorithm identifies the customer prefixes

based on the information from the provider (for example, cus-
tomer routes are tagged with specific informational communi-
ties). We assume deaggregated prefixes exist at the reference
time and look for the time deaggregation was first deployed.
We progressively contrast the content of the reference routing
table with each of the previous routing tables, starting from
the furthest collection moment in time. This allows us to
determine the presence of a covering prefix injected by the
customer network and also the approximative moment of
deaggregation. As depicted in Figure 6, we choose to verify
the routing information from as much as one month before
the reference time in order to capture the dynamics of prefix
deaggregation in a timescale that is consistent with the billing
period. However, the algorithm can be run on longer timescales
(e.g. two months, three months, one year etc.), thus allowing
the ISP to get a bigger picture on the deaggregation dynamics
within its customer base at different timescales.
1) The Two-by-Two Routing Tables Comparison: We con-

trast the entries from the reference routing table with any other
routing table collected in the period of analysis, to which we
further refer as a pair routing table. We begin by first defining
the set of prefixes present only in the reference routing table
by separating the prefixes advertised only at the reference time
and not present in the pair routing table, i.e

∆i = Pref − Pi (3)

where Pref represents the set of prefixes in the reference
routing table and Pi, the set of prefixes installed in the paired
routing table. For each of the prefixes in the ∆i set defined
above, we use a digital tree search [17] to identify the covering
prefixes among the entries in the pair routing table. Assuming
that no network is less specific than a /8, we are thus able
to rapidly build the covering digital tree corresponding to
each of the prefixes of interest. From each tree, we retrieve
the least-specific prefix, i.e. the tree root, which we further
use in the traffic data analysis. We do not examine the
intermediate prefixes (shortly appearing intermediate phases
in the deaggregation process), since for these there exists a
more-specific prefix which can influence the manner in which
traffic flows towards the destination.
By performing this comparative study using all the peri-

odically collected routing tables from the ISP, we obtain an
accurate picture of the evolution of the prefix deaggregation
dynamics within the customer base of the provider. We moni-
tor the changes of the previously defined prefix sets ∆i during
the analysis interval. The approximative time of deaggregation
is, at the latest, the collection time of the first routing table
snapshot which contains the candidate more-specific route
known to already be installed in the reference routing table.
This moment is marked in the time-line depicted in Figure
6 as the first moment where the more-specific prefix and the
covering prefix are both present in the pair routing table.

B. Sifting the Results
In order to correctly identify the long-lived deaggregation

events which may have an economic impact, we need to make
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Fig. 6. Identifying deaggregated prefixes.
sure that the retrieved more-specifics are not sporadic events.
For avoiding cases of dynamic deaggregation-aggregation be-
haviour, we filter out prefixes with intermittent presence in the
routing tables, i.e. with a presence time lower than 5% of the
billing period.
We apply the same detection algorithm to identify potential

re-aggregation cases of more-specifics into their covering
prefixes. We perform this latter step in order to assure that
from the results provided by the algorithm we select only the
more-specific prefixes that remain installed in the routing table
for at least one month from the moment of deaggregation, and
thus may impact the transit traffic bill. Past the reference time,
the previously described two-by-two comparison algorithm
actively detects cases of re-aggregated more-specific prefixes
in the∆i set. We approximate the time of re-aggregation with
the collection time of a pair routing table which contains only
the covering prefix after the reference time.
1) Validation of Selective Advertisements: The selective

advertisements validation process is further integrated in Step
2. We combine the internal routing view from the ISP with
the external views taken from the ASes participating in the
RIPE RIS and RouteViews project. In particular, we identify
all the active providers used for reaching both the covering
prefix and the more-specific prefix from Step 1.
We aim to check if the covering prefix is injected to all

the active providers and the deaggregated prefix is selectively
injected to only own. To this end, we analyze all the routing
information retrieved during the corresponding time period
(one month prior to the moment of deaggregation and one
month after) from all the monitors whose routing tables we
were able to retrieve from the public collectors. We monitor
the routing information from each external AS towards the
customer prefixes. Thus, we can infer the approximative
number of active transit providers for the destination prefix
by identifying the list of unique second last-hops (2LH) in the
AS-Path BGP attribute after removing AS-Path prepending.
The 2LH is the AS which we see before the destination AS in
the AS-Path. This represents the provider used to reach the
destination from the traffic source (i.e for some of the paths,
this 2LH should be the ISP providing the data for this study).
We accept a certain error in the inferred connectivity degree

of each customer, since we only have partial information on
the interdomain routing. Given that the number of monitors
active within the RIPE RIS and RouteViews project is limited,
we have only a partial picture of how external sources of
traffic reach the interest prefixes. However, since the sample of
monitors is biased towards large Tier-1 networks, we assume
that this is a reasonable approximation. We discuss how it

influences our results, along with other limitations of the
methodology in Section V-C.

V. EXERCISING THE PROPOSED METHODOLOGY

A. The Dataset
The measurements we perform in this paper use a complete

dataset provided by a major Japanese ISP. The primary set
of data we integrate in our study, the BGP routing data, is
periodically collected from a monitor inside the ISP’s network.
Every two hours we obtain the complete routing information
from the ISP. The routing snapshot (i.e. the complete BGP
routing table taken at a certain moment in time) offers an
accurate perspective on the dynamics of the customer prefixes
which are of interest for our study. We assume that if a prefix
is present in consequent snapshots it was also there between
the snapshots. In addition, prefixes not present did not appear
between the snapshots. The two-hours timescale offers a small
enough granularity in order to capture the long-lived changes
in the deaggregation strategy of the customer network. In order
to correctly separate the customer network information from
the BGP snapshots, we use the internal community tags the
ISP uses for the routes received from its customers. We target
only networks with public AS numbers, since it is likely that
they also have multiple providers.
The collection of transit links through which each of these

customers connects to the provider is necessary when ex-
tracting the traffic data corresponding to the detected cases
of strategic deaggregation. In order to extract the topology
information, we parse all the configuration files from the
provider’s edge routers, characteristic to different vendor-
specific operating systems.
The traffic data is collected in NetFlow format and spans

over a two months period i.e. May-June 2012. The sampling
rate used for most routers is 1

8,192
. However, for some routers

this may differ, depending on the traffic load on the router and
its processing power. We analyze the traffic data that corre-
sponds to the two different billing-compatible time intervals,
i.e., one month before and another month after the deployment
of strategic deaggregation. This limits us to detecting cases of
customer networks deploying the deaggregation mechanism
in the time-window corresponding to the two months of the
study, i.e. May-June 2012. This limitation comes from the
characteristics of the major ISP itself, which stores the traffic
data for its customer only during the latest two months.
Finally, we add to our analysis the type of billing scheme

employed by the ISP. Generally, the billing method relies on
the 95th percentile rule and the exact interval used for billing
is the calendar month.

B. The Results
We illustrate the use of the proposed methodology on the

dataset described in the previous section. First, we perform
an extended analysis of deaggregation over a period of 6
months, from May until October 2012. This is aimed at
providing a better understanding of the dynamics concerning
deaggregation within the customer base of the Japanese ISP. To



TABLE I
NUMBER OF DEAGGREGATING CUSTOMER ASES AND TOTAL ADVERTISED

DEAGGREGATED PREFIXES PER MONTH.

Month No. of customer ASes No. of more-specifics
May 2012 7 154
June 2012 1 3
July 2012 2 3
August 2012 6 19
September 2012 5 42
October 2012 2 12

this end, we use the routing data provided by the operational
ISP for a period of 7 months (May -November 2012). We
iteratively select as a reference time every last snapshots taken
each month from May to October 2012. By applying the
algorithm described in Section IV-A, we are able to identify
the set of customer networks that start to deploy deaggregation
within the month previous to each of the reference times. We
summarize the detection results in Table I. For example, we
note that during August 2012 there were 6 different customer
ASes which started to inject 19 new more-specific prefixes
to the Japanese provider. We conclude that, generally, there
are few customers deaggregating. And even more, the number
of more-specifics injected to the ISP for each of the months
analyzed is generally low, as observed in the third column from
Table I. Overall, we observe 212 new more-specifics being
injected throughout the 6 months analyzed.
Given that the traffic data is available only for May-June

2012, we present the analysis of the economic impact for
deaggregation strategies identified in this particular period. In
order to differentiate the cases of strategic deaggregation, we
merge the results of the previous analysis with the external
routing data from the monitors active in the RIPE RIS and
RouteViews projects. We use the results corresponding to the
prefixes deaggregated in May 2012, which also persist in the
routing table for the next month.
Overall, we detect 154 more-specific prefixes2 injected

by the customers of the Japanese ISP during the month of
May 2012. The prefixes are injected by 7 of the networks
purchasing transit from the Japanese provider, as noted in
Table I. Among the 154 more-specific prefixes first injected in
May 2012, we are able to identify one case of deaggregation
combined with selective advertisements, which fulfills all the
requirements imposed. Our analysis shows that on the 28th of
May, at around 16:00 hours, a customer prefix is deaggregated
and the resulting more-specific prefix is injected to only one
of the providers (i.e. the major ISP providing data). Moreover,
the more-specific prefix is not re-aggregated into his covering
prefix at any point during the following month of June 2012.
For the quantification of the impact of strategic deaggre-

gation on the transit bill, we compare the traffic pattern for
the identified prefix during a month prior to the moment
of deaggregation (i.e. May 2012) with the traffic pattern

2The number of more-specifics injected in May 2012 is larger that in the
other months due to a heavy deaggregator, which injects 120 more-specifics
out of the total identified.
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Fig. 7. Study case: result identified using the proposed methodology.

for the more-specific during a month after the moment of
deaggregation (i.e. June 2012). Since the billing period used by
the Japanese ISP is the exact calendar month, we compare the
bill from May 2012 with the bill from June 2012. In order to
extract from the traffic collection the data that interest us, we
must first identify the physical links connecting the customer
network under study and the provider. By parsing all the router
configuration files, we obtain the identity of all the interfaces
on the routers connecting the two networks. We then evaluate
the chargeable amount of traffic for each case using the 95th
percentile billing rule. We conclude that, even if the expected
amounts of traffic for the two prefixes are comparable, the
transit bill is 20% lower for the customer AS after selectively
injecting the deaggregated prefix, as observed in Figure 7.
The difference in the chargeable volume of traffic per month

may be due to the surge we observe in the traffic profile
depicted in Figure 7 during May 2012. In order to check that
this increase is caused by routing changes that influence the
way large sources send their traffic towards the destination
AS, we would need a complete view of the evolution in time
of the BGP routing tables for the source networks. However,
this type of information is unavailable at this point. Instead,
we observe the changes in the number of active sources out
of the top 20 which forward their traffic to the destination
prefix via the Japanese provider, as depicted in Figure 7. We
extract this information from the NetFlow traffic data of the
Japanese ISP. The analyzed sources are prefixes with length
24 and are responsible for more than 50% of the total traffic
towards the destination prefix. After the injection of the more-
specific prefix, the traffic has a more stable behaviour than
in the previous case and, also, the number of active traffic
sources is more stable in time. We can also notice that there
is a symmetry between the surge of traffic and an increase
in the number of sources that forward their traffic through the
transit link. The observed correlation between routing changes
and traffic fluctuations supports the hypothesis according to
which the 95th percentile billing rule can be gamed by the
customer networks by restricting the choices of transit links
diversity towards the destination prefix. However, we cannot
demonstrate the causality between the changes we observe



in the traffic pattern and the deaggregation strategy being
deployed because of the lack of interest cases.
Based on the single perfect match for the strategic deaggre-

gation strategy previously identified, we can only conclude
that the study result supports the analytic observations for
the economic impact of deaggregation. Thought the results
presented in [9] may be true, the only case exposed using the
proposed methodology is not sufficient for a generalization.

C. Limitations of the Methodology
Challenge 1: Obtaining the data that enables a complete

analysis of strategic deaggregation. The quality of the results
is conditioned by the quality of the data. Though the amount
of information we handle is very large, it does not offer perfect
information regarding the operations of the customers.
Challenge 2: Dealing with partial information. The

Japanese ISP maintains fine-grained traffic information for
its customer prefixes only for the latest two months from
the moment of analysis. Since we require the traffic traces
both before and after the strategic deaggregation mechanism
was deployed, this limits the traffic analysis only to cases of
strategic deaggregation that have occurred as far as one month
previous to the moment of analysis.
Also, given that the number of monitors active within the

RIPE RIS and RouteViews project is limited to approxima-
tively 100, we have only a partial picture of how external
sources of traffic reach the prefixes identified. Consequently,
a prefix may be thought to be selectively advertised when
it is in fact advertised to multiple providers. This happens
because not all the paths appear at the available monitors. In
this case, though, we should not see a lower transit bill than
in the aggregated case.
Challenge 3: Generalization the findings. The results of our

study show that the customers of the Japanese ISP do not make
an extensive use of prefix deaggregation in general, and even
less in the strategic form defined in this paper. The matching
case exposed is not enough to draw any conclusions regarding
the validity of the results presented in [9] and to generalize
this type of behaviour. However, it is important to note that
this may not be the case for every ISP.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a novel methodology for iden-
tifying cases of prefix deaggregation generated by the cus-
tomers of any ISP within a predefined time-window. We focus
the methodology to identify cases of selectively advertised
deaggregated prefixes. We explain how the economic side-
effect of the strategic deaggregation can be measured. In order
to identify real occurrences of the interest phenomena, we
demonstrate the use of this methodology on the real traffic
and routing data from a major Japanese ISP. Overall, we do
not observe much deaggregation generated from the customer
networks of the ISP. We distinguish and analyze a strategic
deaggregation case that fulfills all the constraints imposed in
the methodology. We find that through selectively injecting
more-specifics, the customer AS is able to smoothen the traffic

variations and save approximatively 20% on its transit bill.
On a long term, this may negatively impact the business of
the ISP. This result supports the hypothesis of an economic
impact of strategic deaggregation, but it is not sufficient for
generalizing it. For future work, we plan to expand our study
to datasets spanning over longer periods of time. By doing so,
we expect to add statistical relevance to the results and provide
the validation for the economic impact of prefix deaggregation.
Until now, the transit providers did not have any incen-

tives to refrain from advertising the deaggregated prefixes as
injected by their customer [18], since the marginal cost is
limited to an additional entry in an already bloated routing
table. Provided the validity of the above-mentioned economic
impact, the new incentives might be enough to push providers
to change their strategy and transfer some of the costs of prefix
deaggregation back to their customers. This could imply an
important shift in the prefix deaggregation strategies adopted
by the ASes in the Internet, moving the set of individual
deaggregation strategies closer to the social welfare, where
everybody enjoys increased benefits.
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