
Scalable Support of Interdomain Routes in a Single
AS

Cristel Pelsser*, Akeo Masuda and Kohei Shiomoto
NTT Network Service Systems Laboratories, NTT Corporation, Japan

Abstract—The Internet has grown extremely fast in the last two
decades. The number of routes to be supported by the routers has
become very large. Moreover, the number of messages exchanged
to distribute the routes has increased even faster. To keep up
with the increase, network operators regularly have to perform
costly upgrades of the routers. It is unclear whether advances
in hardware will be able to keep up with the increasing routing
load. More importantly, the large number of routes and iBGP
messages negatively impacts iBGP convergence time leading to
long connectivity losses.
In this paper, we propose a scalable way to support the Internet

routes in a Service Provider network. We make use of distributed
servers that select routes on behalf of the routers. Then, routes
are stored in a Distributed Hash Table (DHT). We adapted the
concept of DHT for that purpose. Each router maintains its share
of Internet routes in addition to a cache of routes currently
in use to forward the Internet traffic. We call our proposal
SpliTable. We show that our proposal is more scalable in the
number of routes supported in each router than current iBGP
route distribution solutions. Moreover, the number of control
messages exchanged with our proposal is bounded contrary to
current sparse iBGP route distribution solutions which may never
converge.

I. INTRODUCTION

The Internet is divided into multiple domains also called
Autonomous Systems (ASs). An AS is a network administered
by a single entity such as an Internet Service Provider (SP)
or a university, for example. The Border Gateway Protocol
(BGP) is the routing protocol used to distribute the Internet
routes between neighboring ASs and to distribute these routes
inside an AS itself.
In the last two decades, the number of routes to be supported

by the routers has become very large. Moreover, predictions
say that this number will continue to increase in the future.
In addition to the number of routes, the number of messages

exchanged to distribute the routes has increased even faster.
In [1], Huston and Armitage have studied the increase in
BGP routing entries and in number of BGP messages. They
predicted a growth of the routing entries by a factor 2 while
the amount of BGP advertisements will increase by a factor
4, in 5 years time.
The large number of routes and messages to be processed

has an impact on BGP convergence. Feldmann et al. [2] have
shown that BGP processing time is largely affected by the rate
of BGP update messages and the number of BGP peers. They
have shown that BGP processing time plays a significant role

Cristel Pelsser now works at Internet Initiative Japan (IIJ).

in BGP convergence time. Long BGP convergence times in
turn affect the traffic [3].
Inside a SP network, the Internet routes are redistributed

to the routers via iBGP. Traditionally, a full-mesh of iBGP
sessions where established for that purpose. In order to reduce
the load of the routers, solutions requiring the establishment of
fewer iBGP sessions are now used. These solutions make use
of Route-Reflectors (RRs) and confederations. They are called
sparse iBGP topologies. These topologies are more scalable in
the number of routes stored in the routers than an iBGP full-
mesh. However, this number is still large. To be able to forward
packets to every possible destination, each router maintains all
the Internet routes in its Forwarding Information Base (FIB).
Secondly, BGP requires that each router also maintains tables
with the routes received from and sent to each of its BGP
peers. These tables are called the Adj-RIB-Ins and Adj-RIB-
outs. Their number increases with the number of BGP peers.
In addition to maintaining large routing tables, the number

of BGP messages exchanged with a sparse iBGP topology
is considerable. In some situations, the amount of messages
required to distribute the routes is not even bounded. The iBGP
protocol may not converge [4].
In this paper, we propose a solution to reduce the number

of routing entries in the routers of a SP network and the
number of BGP messages exchanged between the routers of
the SP network. In our proposal, the distribution of the Internet
routes inside the local AS is sure to converge. We solve the
scalability issue of iBGP. By focussing on the single AS case,
our solution provides a mean for network administrators to
deploy a scalable Internet routing solution in their network
without requiring changes in their customer, peer and provider
networks, and, a fortiori to the global Internet. The adoption
of our proposal in an AS is transparent to the external ASs.
In essence, we propose to split the Internet routing table

on multiple routers of the AS. Each router does not maintain
routes for every prefix locally, anymore. We call our proposal
SpliTable (ST). We propose to use distributed servers and a
method to distribute the load on these servers. The servers
select routes on behalf of the routers. Normal routers do not
have to maintain Adj-RIB-Ins and Adj-RIB-outs anymore. The
same routes are selected for all the routers of a Point of
Presence (PoP). For a prefix, two routes are selected for each
PoP. With two routes per PoP, our solution is resilient in the
face of the failure of one of the routes. Once the routes are
selected at the servers, they are stored in a DHT. We adapted
the concept of DHT for that purpose. Each router of a PoP

maintains a portion of the Internet routes selected for the PoP.
In addition, it maintains a cache of routes that are currently
in use to forward the traffic. Once a packet arrives, if there is
no entry for its flow in the cache, the corresponding route is
retrieved from the DHT. Since the routes of a PoP are stored
in the PoP itself, quick route retrieval upon packet arrival is
ensured.
In the next section, we introduce the work that is related to

our proposal. Then, in section III, we present SpliTable, our
proposal. In section IV, we analyze the scalability of SpliTable
with regard to the size of the routing tables and the amount
of control messages required to distribute the routes. Finally,
we conclude the paper and highlight future directions for this
work.

II. RELATED WORK
Solutions that tackle the scalability issue of BGP are

currently studied in the Routing Research Group (RRG) of
the IRTF. Among the solutions considered, the most popular
approach is the Locator/ID Separation Protocol (LISP) [5].
The authors propose to stop advertising in BGP the prefixes
allocated to the ASs located at the border of the Internet.
The hosts in these ASs are assigned an identifier. There is
a mapping function that associates an IP address to a host’s
identifier. This IP address can be reached based on the BGP
routes. Packets destined to the host are encapsulated to reach
the node with the IP returned by the mapping function. The
node with this IP address knows how to reach the destination
host. It decapsulates the packets and forwards them to the host.
The difficulty of this approach lies in its deployment in the
Internet. A large number of ASs at the border of the Internet
has to adopt the solution to see an impact on the scalability.
Moreover, ASs that adopt the solution still have to be reachable
from hosts in ASs that do not adopt it.
In [6], Krioukov et al. study the trade-offs in using compact

routing in the Internet. In compact routing, the size of the
routing table is reduced by aggregating the routes. This leads to
longer routes and, thus, an increase in resource consumption.
This phenomenon is called path stretch.
Virtual Aggregates [7] is an example of a compact routing

solution applied to a single AS[7]. We describe VA and
compare it to our proposal in section IV.
Finally, [8] propose the use of Route Servers (RSs) that

select a BGP route on behalf of other routers in the AS. The
motivation of these works is to be able to perform smarter
BGP route selection than in the routers. We also rely in this
RS concept. We see an additional benefit in this concept. It
may relieve the routers from the necessity of storing a large
number of routes in their own tables. Our contribution with
regard to the RSs is that we propose in this paper a means to
distribute the routing load among the RSs.

III. SPLITABLE (ST) ARCHITECTURE
In this section, we describe our proposal for the scalable

redistribution of Internet routes inside an AS. Our proposal,
SpliTable, relies on a distributed route selection mechanism
and a DHT to split the routing table on the routers of the AS.

Fig. 1. Route Servers prefix allocation.

A. Distributed Route Selection

We introduce Route Servers (RSs) in the AS. Each server is
responsible of BGP path selection for a subset of the external
prefixes. It receives all the external BGP messages for these
prefixes. Prefixes are assigned to a RS as follows. Each RS
is assigned an ID. The set of RS IDs is noted R. There is
a function that maps each prefix to a key. Route servers’
identifiers and prefix’s keys belong to the same domain K .
Thus, R ⊆ K . Each RS with ID ri is responsible for prefixes
with key k comprised in rj < k ≤ ri, where rj , ri ∈ R and
rj is the largest ID, that is smaller than ri, assigned to a RS.
In order for the AS Border Routers (ASBRs) to send all the

routes they learn on eBGP sessions to the appropriate RSs,
each ASBR has an iBGP session with each RS. The ASBRs
discover the RSs that are present in the AS, as well as their
ID, by means of the IGP.
In figure 1, the ID of a route server is the number used in

its label. Thus, the ID of RS5 is 5. Moreover, the key of a
prefix is the index used in its label. For example, P2 has key
2. In figure 1, RS5 receives all the routes for prefix P2. The
advertisements concerning P6 and P9 are sent to RS10.
Traditionally, the BGP routes are redistributed to the routers

of an AS on iBGP sessions. Then, each router performs the
selection of its own routes. This changes with our proposal.
Routers do not perform their own selection anymore. Thus,
the current route selection procedure has to be adapted.
The current BGP Decision Process (DP) is shown in table

I. The 4th and the 5th rules of the DP make use of the
location of the router in the topology. These rules ensure hot-
potato routing. Hot-potato routing consists in sending traffic
as soon as possible outside of the AS to reduce the internal
cost of carrying interdomain traffic. We provide a network of
reference for illustrating the BGP route selection in Figure 2.
The considered AS is divided into Points of Presence (PoPs).
A PoP is a set of routers that are present in the same location,
for example in the same city or the same building. Figure 3
illustrates the traditional BGP route selection at the routers
in PoP “PoP-SW” assuming a full-mesh of iBGP sessions.
Routes with Rd and Rc as Next-Hop (NH) are eliminated at
the 5th rule of the BGP decision process. The cost to reach
the NH is higher for these routes than for routes with NHs
Ra and Rb. Then, when comparing routes with NHs Ra and
Rb, Rb has a higher ID than Ra. Thus, it is eliminated and
Ra is selected as best route for R7, R8 and R9.

Fig. 2. Reference network.

Fig. 3. Traditional route selection.

We note that, as in Figure 2, in deployed SP networks,
the IGP cost of inter-PoP links is usually higher than intra-
PoP link costs. This common design [9] ensures that traffic
originated in and destined to the same PoP stays in the PoP.
This design has the following consequence: all the routers in
the PoP perform a consistent route selection. If an external
route is received at a router of the PoP, this route will be
selected. Otherwise, all the routers of the PoP select the same
route, learned on an eBGP session in a different PoP. In Figure
3, all the routers select a route in PoP “PoP-NW” for P1.
Similarly, all the routers in “PoP-SE” select the route with Rc
as NH, according to the traditional route selection process.

TABLE I
SIMPLIFIED BGP DECISION PROCESS (DP)

Sequence of rules
1 Highest Loc_pref 4 eBGP over iBGP
2 Shortest AS-path 5 Lowest IGP cost to NH
3 Lowest MED 6 Tie-break

In our proposal, route selection is done at the RSs instead
of at the individual routers. However, in order to favor hot-
potato routing, the location of the router that will use the route
is considered in the route selection process.
Route selection is consistent for all the routers in a PoP

because they are in the same location. Thus, it is sufficient for
the RS to select the same route for all the routers in the PoP.
The RS only computes routes for one router of the PoP. We
call this selection “per PoP route selection”. In our proposal,
each router advertises the identifier of its PoP in the IGP. This
enables the RSs to identify the nodes of a PoP.
First, there are no changes concerning the rules 1 to 3, in

table I. The 4th rule of the BGP decision process becomes: “If
the NH of the route is directly connected to one of the routers
of the PoP for which the selection is performed, select this
route”. In the 5th rule, the route server will keep the routes
with NHs that are the closest to the considered PoP. Since
intra-PoP paths have lower IGP cost than inter-PoP paths [9],

Fig. 4. Per PoP route selection.

the 5th rule of the DP can rely on the IGP cost from any node
in the PoP to the route’s NH. This cost is computed from the
link costs distributed by the IGP. Finally, there are no changes
in the application of the tie-breaking rules.
Figure 4 illustrates the per PoP route selection performed

at route server RS5 for prefix P1 in the network of Figure 2.
As it is already widely recommended in traditional iBGP

topologies, in order to avoid forwarding loops[10], encapsula-
tion is also required to avoid such loops with our proposal.
In order to allow fast restoration and load balancing of the

traffic from a PoP on multiple ASBRs, we enable the RSs
to select for each PoP multiple routes to a given prefix. We
observe here that multiple routes’ selection per PoP enables
the routers of “PoP-NW” in figure 2 to use both Ra and Rb
for the traffic destined to P1, should the RS advertise the two
best NHs to the routers of the PoP.
With per PoP route selection, all the nodes in the PoP use the

same routes. Thus, per PoP route selection makes possible a
split of a PoP’s routing table. Each router of the PoP maintains
only a portion of the routing table. When a router needs a route
that is not present locally, it requests it from another node in
its PoP. Since all the routers in a PoP are in the same location,
retrieving a route from a neighboring node is fast. In the next
section, we will describe how routes are distributed in a PoP
and how route retrieval is performed.

B. Distributed Routing Tables

In this section, we present our proposal for maintaining
distributed routing tables inside a PoP. We also describe how
routing information is retrieved from this distributed route
repository.
First, we list the set of properties that is desired from a

routing system. We will show in section IV that our proposal
verifies these properties.

• Maintaining routes in the routers should consume less
memory than current BGP’s routing tables’ sizes.

• Distributing the routes on the routers and retrieving the
routes necessary to forward traffic should consume less
bandwidth and CPU than current iBGP route distribution.

• Retrieving a routing entry upon packet arrival should only
take a few tens of milliseconds.

In the development of our proposal, we rely on the following
assumptions:

• A large amount of the traffic received at an ASBR is
destined to a small number of destinations.

This assumption is motivated by the findings expressed in
[11] and [12].Due to this property of the traffic, we first
note that the amount of active routes in the ASBRs is small.
Thus, an ASBR does not need to maintain all the routes
locally. In our proposal, ASBRs only maintain their share of
routes and the subset of active routes in their tables. Second,
there may be some benefit in replicating routes for popular
destinations in order to retrieve this information quickly. Our
second assumption is:

• The routes to popular destinations are stable.
This assumption is confirmed by the work of Rexford et al.
[12]. This assumption implies that the routes active for a long
period at an ASBR are not likely to change often. They can
be maintained in a cache. There is no need for regular pulling
of these routes at short timescales to check for changes.
In our proposal, we choose to store the routes in a Dis-

tributed Hash Table (DHT). DHTs provide a framework for
the distribution of the routes on multiple nodes. We choose
to use Kademlia [13] due to the following properties of this
DHT:
1) The search functionality in Kademlia is based on the
XOR metric. As we will show later in this section, this
metric is suitable for searching for a prefix.

2) The information is replicated on multiple nodes. Repli-
cation provides robustness in the face of the failure of
a DHT element. In our case, routes are still available
if a network element fails, if the DHT graph is not
partitioned.

3) In Kademlia, replication increases with the popularity of
the information. It requires less messages and it takes
less time to retrieve popular information. This property
is suitable to the popular destinations trends observed in
the Internet traffic [12].

Kademlia is currently used as a file tracker in BitTorrent,
the widely deployed peer-to-peer network for file sharing. It
enables to quickly find a list of nodes that participate in the
torrent for the distribution of the searched file.
In Kademlia, nodes are assigned an identifier (ID). More-

over, each piece of information is assigned a key. Keys and
node IDs belong to the same domain, the set of naturals that
can be represented in 160 bits. The key identifies a piece of
information. It is used to retrieve the information from the
DHT. In our proposal, a piece of information is a route to be
used in a given PoP.
The key is used to locate the nodes that will store the related

piece of information. In Kademlia, node IDs and keys are
compared to determine in which node to store the information.
A piece of information will be stored in k nodes. k is called
the replication parameter. These nodes have the IDs that are
closest to the key based on the XOR metric. Figure 5 illustrates
the storing action of a (key, value) pair in Kademlia as well

Fig. 5. Store a (key,value) pair in Kademlia.

as the use of the XOR metric. Each node maintains a list of
contacts. For each contact, it knows the node ID, its IP address
and the port on which it can be reached.
In figure 5, node R8 wants to store v with key 10111 in the

system. Let assume in this example that k = 2. R8 looks in
its own contact data structure for the closest nodes to 10111
(23 in decimal representation). The closest nodes to key 23 are
R20 and R22, in the b3 list. According to the XOR metric,
R22 is the closest node to key 23 since only the last bit of its
ID, 10110 differs from the key, 10111. Similarly, R20 is the
second closest node. The third bit of its ID differs from key
23. As k = 2, R8 contacts these two nodes. R8 asks these
nodes if they know closer nodes to the key 23. This is done
by sending a findNode request. These nodes do not know
closer nodes. They know the existence of R24. However, R24
is farther away than R20 and R22. The second bit of R24’s ID
already differs from the key. Both nodes return R20 and R22
as closest nodes. Thus, R8 asks them to store v, by sending
them a store request. Finally, the closest nodes are added to
the contacts of R8. Here no new nodes are added since they
were already known. However, timers for these contacts are
reset.
Now, assume thatR20, in figure 5 wants to retrieve the value

for key 23. It first looks for the (key,value) pair locally. If this
fails, it searches for the k closest nodes to 23 in its contacts.
These are nodes R20 and R22 according to the XOR metric.
Thus, it asks R22 for the value with key 23. R22 looks in its
own data structure. If it finds the value, it returns it. Otherwise
it returns the k closest nodes to 23, which are R20 and R22.
In the latter case, the search failed. The searched information
is not present in the system.
We observe that the XOR metric is appropriate for IP

destination and prefix comparison. IP packets are currently
routed according to the longest match prefix. Let’s assume that
an ASBR has routes for 66/8 and 66.249/16. Today, when an
IP packet with destination address 66.249.89.147 is received,
the ASBR routes the packet according to the route for prefix

66.249/16. The XOR metric is consistent with this practice.
With the XOR metric, the longest match prefix 66.249/16 will
be closer to the IP destination than the other prefix. It will thus
be preferred.
We will now explain how we propose to adapt Kademlia to

our purpose. In our proposal, S is a RS and R20 is an ASBR,
in figure 5. First, we consider the node ID assignment. We also
define the keys to store a route in the system and to retrieve
it. These concepts are particularly important as they determine
the efficacy of the store and retrieval procedures.
In Kademlia, the ID of a node is 160 bits long. In our

proposal, we set the ID of a node to its PoP identifier to which
a hash value is concatenated.

< nodeid >::=< PoPid >< hash >

where the PoPid is 32 bits long and < hash > is 128 bits
long. < hash > is obtained by applying MD5 on a randomly
generated number.
In this paper, the DHT is used to store routes. A route is

a (key, value) pair where the key is 160 bits long. We denote
the key of a route as kr. The format of this key is:

kr ::=< PoPid >< prefix >< mask >< padding > .

< PoPid > identifies the PoP for which the route is destined.
It is 32 bits long. < prefix > is a 32 bits IPv4 prefix and
< mask > is the mask for the IPv4 prefix. The mask is also
32 bits long. < padding > is 64 bits long. All these 64 bits
are set to 0.
The format of the value component is v ::=< version ><

length >< NH1 >< pref1 > ... < NHn >< prefn >
where < length >::= n. The value may consist of multiple
NHs to which the traffic destined to the prefix may be sent. A
preference is assigned to each NH. Setting multiple NHs in a
route enables an ASBR to perform restoration upon a failure
as well as to load balance the traffic on multiple paths during
normal network operation. In this paper, we consider n = 2.
We do not apply any modifications to Kademlia’s store

procedure. Our definitions of kr and nodeid ensure that routes
destined to a PoP will preferably be stored in nodes of the PoP.
This is because for a node in a PoP and a route destined to
this PoP, the first 32 bits of the node ID and the route’s key
are identical.
Upon a packet arrival, the ASBR (for example R20 in

figure 5) has to retrieve a matching route in order to forward
the packet. However, the matching prefixes for the packet’s
destination is not known in advance. A fortiori, the most
specific matching prefix is not known. Thus, kr cannot be
built. We define a different key to retrieve a route from the
system. This key is denoted kd:

kd ::=< PoPid >< IP >< mask >< padding > .

< PoPid > is the identifier of the PoP in which the packet
is received. < IP > is the packet’s IP destination address.
It is 32 bits long. The mask is composed of 32 bits set to 1.
Finally, the < padding > is 64 bits long. All these 64 bits are

set to 0. The presence of < PoPid > at the head of the key
enables to contain route search in the PoP and, thus, quickly
find the route computed for the PoP.
Since the key of the stored route and the key to look up

for a route are different, we cannot use Kademlia’s look up
procedure. Our proposed route retrieval method is shown in
algorithm 1.
Let a be the ASBR receiving a packet, in algorithm 1 and 2.

Moreover, N is the set of the next nodes to contact to search
for the route.

Algorithm 1 retrieveRoute(kd)
1: repeat
2: {search for a less specific prefix if a matching route is

not found for the initial kd}
3: Nnew=N=a {first search in the local node}
4: {Initialize Nnew in order to not override N in the first

execution of the loop}
5: repeat
6: {search for the most specific prefix for kd}
7: N=Nnew

8: (Nnew, P)=findMatchingRouteInClosestNodes(N ,kd)

9: if (P $= ∅) then
10: r=mostSpecificNewestRoute(P, r)
11: installInFIB(r)
12: end if
13: until (Nnew ⊆ N)
14: kd=resetLastIPAndMaskNonZeroBits(kd)
15: until (defined r)
16: replicate(r)

In algorithm 1, we first search for a prefix matching the key
kd. If such a specific route cannot be found, we search for a
less specific route. This is done by setting the last non zero
bit of the IP address and the corresponding tailing bits of the
mask to 0, in line 14. This is the purpose of the outer most
loop (lines 1-15).
For a given kd, in algorithm 1, lines 5-13, we first look

in the local node for the most specific and newest matching
route for kd (line 8). We also search for the closest nodes
to the key kd (line 8). If a matching prefix is found, it
is installed in the Forwarding Information Base (FIB) (line
11). Thus, we note that as soon as a route for a matching
prefix is found it is installed in the FIB. This enables the
ASBR to forward packets quickly even though the route is
not the final, most specific route. The search continues to
find the most specific route. For that purpose, the k closest
nodes known locally, the nodes in N , are contacted in the
next run of the inner loop (line 8). These nodes in turn
locally search for the most specific and newest route. In
addition, they respond with a list of k closest nodes. Details for
findMatchingRouteInClosestNodes are provided in
algorithm 2.
During a route search, when routes are received from

multiple nodes, line 8 in Alg. 1, the set of “most specific

Algorithm 2 findMatchingRouteInClosestNodes(N ,kd)
1: if (|N | = 1 and N = a) then
2: Nresult=getClosestNodes(kd)
3: Presult=getMostSpecificRoute(kd)
4: else
5: for (n ∈ N) do
6: (Nnew, Pnew)=sendFindRoute(kd, n)
7: Nresult=Nresult ∪ Nnew

8: Presult=Presult ∪ Pnew

9: end for
10: end if
11: return (Nresult, Presult)

matching routes” is identified. From this set, the method
mostSpecificNewestRoute only returns the route with
the newest version number (line 10). The version number of
a route is important here. Each time a RS computes a route,
it attaches a version number to the route. Popular routes are
replicated in the DHT. When the RS recomputes a route, it
deletes the old routes present in the k closest nodes. However,
it is not able to delete the other replications. These copies
timeout. In the mean time, the version number ensures that
the stale routes are not used to forward traffic once the route
search is terminated.
In this section, we presented our proposal, SpliTable. We

showed how to distribute the load on multiple RSs while
ensuring full visibility of the routes for a prefix at a RS.
Together with encapsulation, this ensures correctness [4].
Our route distribution proposal converges and there are no
forwarding loops. Then, we presented our modifications to
Kademlia in order to support the storage of IP routes and
their retrieval upon packet arrivals.

IV. SCALABILITY ANALYSIS

In this section, we compare traditional iBGP route dis-
tribution and the Virtual Aggregate (VA) solution proposed
by Francis et al. [7] to our solution. Concerning traditional
iBGP, we consider both full-mesh iBGP topologies and sparse
iBGP topologies. For each of these techniques, we quantify
the routing information stored in each node and provide an
upper bound on the number of control messages exchanged to
distribute the routing information.
We define the following variables: p is the number of

external prefixes learned by the AS, n is the number of nodes
in the AS, q is the average number of iBGP peers of a node in
a sparse iBGP topology. And, s is the number of RSs in the
AS, with our proposal. It is assumed that q < s and n > s.
p is an upper bound for the number of prefix advertisement
received at each ASBR. An overview of the variables used
to compute the upper bound on the number of routes in the
tables and control messages exchanged is provided in table II.
We assign a value to each variable. This are the values used
for the generation of figures 6 and 7. These values are only
provided as an example of the values that may be observed in
a real SP network.

TABLE II
VARIABLES

Notation Example value Semantic
n 200 number of nodes in the AS
p 200000 number of external prefixes
q 16 average number of iBGP peers per node (in

sparse iBGP topology)
r 3 average number of eBGP peers per ASBR
s 200 number of RS
a 160 number of ASBRs
l 20 number of PoPs
m 8400 number of eBGP messages (per hour)
k 2 replication factor in the DHT
t 3 min cache timeout (in minutes)
d 18000 maximum number of destinations per “t”

interval
c 4050 maximum number of cache misses per “t”

interval

We computed the average number of iBGP peers q in table
II based on a iBGP topology composed of 2 RRs per PoP.
Each node in the PoP has an iBGP session with the RRs of
its PoP. There is a full-mesh of iBGP sessions in the PoP. And,
all the RRs of the AS are connected in a full-mesh of iBGP
sessions. This design follows one of the recommendations in
[14]. m encompasses the eBGP churn. The value assigned to
m in table II, is the average number of route changes observed
per hour at the routers participating in linx interconnection
point. We computed this average based on one day’s BGP
updates data (March 24th, 2009), collected by the routeviews
project (http://archive.routeviews.org/bgpdata/). The values for
t, d, c are assigned according to the findings of Iannone et al.
in [11]. The authors of [11] assumed that the Internet traffic
of a university is routed according to the entries of a cache.
For each flow, they installed a routing entry in the cache.
For different timeouts, they determined the number of routing
entries required in the cache to route all the traffic. They also
measured to number of cache miss for each timeout value.
In our proposal, the ASBRs request a route entry from the
DHT upon a packet arrival. Once the route entry is received
it is stored in a cache and can be used to route subsequent
packets. The study in [11] gives us an idea of the number of
route requests generated at an ASBR when a routing cache is
used at the ASBR.
In VA, a router may act as Aggregation Points Routers

(APR) for a Virtual Prefix (VP). A VP is an aggregate of
prefixes. It is not necessarily part of the Internet routes. The
APR advertises the VP in iBGP. The APR installs in its FIB
the routes for the prefixes that are more specific than its VP.
However, the other routers do not. They only install the VP
in their FIB. They will thus route the traffic to the APR. The
APR will then relay the route along the most specific route.
This enables to reduce the size of the FIB in the routers. They
do not have to install all the most specific routes in their FIB.
However, it does not enable to reduce the size of the Adj-RIB-
Ins and Adj-RIB-outs as a router still have to advertise all the
Internet routes to its BGP peers. Since the traffic is first sent
to an APR and then along the most specific route, traffic may
follow a longer path than in traditional iBGP. This is called

the path stretch. If there are APRs for each VP in each PoP
as suggested in [15], the path stretch is limited. In order to
avoid forwarding loops, packets are encapsulated at the APRs.
The destination of the encapsulating tunnel is the NH of most
specific route.

A. Number of routes
In this section, we look at the number of routes stored in the

nodes with a full-mesh, a sparse iBGP topology, VA and our
proposal (SpliTable). First, we show in table III the formulas
used to compute the number of routers stored in the nodes of
an AS for each of the techniques.

TABLE III
TABLE SIZES
BGP table sizes

Technique Adj-RIB (in+out) FIB
Full-mesh p(2r + 2n − 3) p
Sparse p(2r + 2q − 1) p
VA p(2r + 2q − 1) (2lp/n)

+2(127 − 2 ∗ 127(l/n))
SpliTable
(at RS)

(p/s)(ar + 2l) –

DHT table sizes (SpliTable)
DHT table Routing cache

At ASBR pkl/n + (a/l)dl/n d
+(a/l)(1440/t)cl/n

At RS pkl/n + (a/l)dl/n –
+(a/l)(1440/t)cl/n

We see in table III that the number of routes in the Adj-
RIBs with a full-mesh is proportional to the number of nodes
in the AS. This is not scalable. Sparse iBGP topologies and
VA are much more scalable. We also observe that for VA, only
the size of the FIB is reduced compared to traditional iBGP
topologies.
In SpliTable, only the RSs maintain BGP routes. The

ASBRs do not maintain a complete FIB. They maintain a
cache with only the most recent useful routing entries. The
ASBRs and RSs maintain their share of the routing entries
due to their participation in the DHT. This share is inversely
proportional to the number of nodes in a PoP. The more nodes
there is in a PoP, the less entries each node has to maintain,
assuming a constant number of Internet prefixes.
Figure 6 illustrates the total number of routes stored in a

node for sparse iBGP topologies, VA and SpliTable. We use
the values listed in table II. We see that the gain of VA is very
limited. For a network of 200 nodes, a node still maintains
98% of the routes stored in a node with the sparse iBGP
topology. This is because the largest number of entries is stored
in the Adj-RIB, not the FIB. VA aims only at reducing the
size of the FIB. The number of routes stored in a RS with
our proposal corresponds to 76% of the routes maintained in
a node in the sparse iBGP topology, for a network of 200
nodes. At the ASBRs, this number drops to 21%. We are able
to effectively reduce the size of the routing tables. We also
note that the higher the number of nodes n, the less entries
there are in the nodes with our proposal. This is because the
number of nodes per PoP increases, n/l. Thus, there are more
nodes on which the PoP’s routing table can be split.

Fig. 6. Comparison of the number of routes.

B. Amount of control messages
In a full-mesh of iBGP sessions, the arrival of an external

BGP message generates either 0 update messages, if the new
route is not the best BGP route for the advertised prefixes or
n − 1 messages otherwise.
In the case of a sparse iBGP topology, it is not possible to

predict the number of BGP messages following the reception
of an eBGP update message. In some configurations, the
reception of an eBGP message may generate an infinite
number of iBGP messages. That is, the iBGP protocol may
not converge in some situations. We refer the reader to [4] for
an example of such a situation.
When making use of Virtual Aggregates to reduce FIB size,

all the prefixes are still advertised in iBGP. Thus, the same
number of iBGP messages is generated with VA as in the
same iBGP topology without VA enabled.
For our proposal, we can provide maximum bounds on the

number of messages required to distribute the routes to the
route servers (first column in table IV), to store, update and
remove entries from the DHT (second column) and to retrieve
the routing entries from the DHT (third column). In table IV,
we show the upper bound on the number of control messages
that may be exchanged in one day in an AS.

TABLE IV
CONTROL MESSAGES

Technique BGP DHT (store, up-
date, remove)

DHT (retrieve)

Full-mesh 24m(n − 1) 0 0
Sparse infinite 0 0
VA infinite 0 0

SpliTable 24m 48ml(min((n/l)+
k, 129k))

a(d + (1440/t)c)(2 ∗
min(n/l, 24∗128k)+
1)

Figure 7 shows the upper bound on the number of control
messages for a full-mesh of iBGP session and for our proposal.
With sparse iBGP topologies and VA making use of a sparse
iBGP topology, it is not possible to provide upper bounds
independently of a specific configuration. One of the merits
of our proposal is that we can provide an upper bound on

Fig. 7. Comparison of the number of control messages.

the number of control messages. Convergence of our route
distribution solution is ensured.
We see in figure 7, that the maximum number of messages is

much higher with our proposal than in a full-mesh. Moreover,
it increases with the size of the network. As n increases,
the number of nodes in a PoP increases. Therefore, the total
number of nodes that can be contacted to store, update, delete
or retrieve a route entry increases. However, we believe that the
real number of control messages is far below this upper bound.
The node discovery mechanism of Kademlia and the XOR
metric ensure that the k closest nodes to a key are found after
a very short exchange of messages. Usually, it requires of the
exchange of at most 2 request, 2 response and 1 store messages
to retrieve information in Kademlia. This is far below the upper
bound of 21 messages for the retrieval operation. When taking
these estimations into account, the number of control messages
can be divided by a factor 4 for the AS of 200 nodes and by
a factor 8 for the 400 nodes case.
The time required to retrieve a route from the DHT depends

on the number of messages that are exchanged to retrieve the
route. Retrieving a route requires at most 2 ∗ min(n/l, 24 ∗
128k) + 1 messages. This corresponds to a maximum bound
of 21 messages for the network described in table II. Again,
even though the upper bound on the number of messages is
high, the real number of exchanged messages should be far
lower than this upper bound. Moreover, these messages are
all contained in the PoP of the requesting nodes. They are
exchanged between nodes that are in the same location. Thus,
the delay of exchanging these messages is expected to be low.

V. CONCLUSION AND FURTHER WORK

In this paper, we proposed a solution to the scalable
distribution of Internet routes in a SP network. We rely on
distributed Route Servers (RSs) for the selection of routes.
We proposed a way to distribute the load on multiple RSs.
After the route selection, the routes are stored in a DHT. In a
DHT, the same key is used to store information and then to
retrieve it. We have shown that this is not the case when the
information is a route entry and it has to be retrieved upon
packet arrival. We adapted a DHT, Kademlia, to our needs.
We provided upper bounds on the routing table sizes and

number of messages exchanged to estimate the scalability
of our proposal. We compared our proposal to traditional
iBGP topologies and the Virtual Aggregates (VA) proposal.
We have shown that our proposal is very effective to reduce
the size of the routing tables. The routers store much less
routes than in a traditional sparse iBGP topology. Depending
on their role (RS or ASBR), they only maintain 76% or 21%
of the amount of routes present in the tables of a node in
a sparse iBGP topology. The upper bound on the number of
messages required to distribute the routes in the DHT and
to retrieve them from the DHT is very high. However, we
are convinced that this upper bound largely overestimates the
number of control messages that will be observed in real
network operation.
The next steps of our work will consist in developing a

prototype of our proposal. We will verify our conviction with
regard to the number of control messages and time to retrieve
a mapping by developing a model of a SP network, its traffic
and its external routes.

REFERENCES
[1] G. Huston and G. Armitage, “Projecting future IPv4 router requirements

from trends in dynamic BGP behaviour,” in ATNAC, Australia, Decem-
ber 2006.

[2] A. Feldmann, H. Kong, O. Maennel, and A. Tudor, “Measuring BGP
pass-through times,” in PAM, 2004, pp. 267–277.

[3] F. Wang, Z. Mao, J. Wang, L. Gao, and R. Bush, “A measurement
study on the impact of routing events on end-to-end internet path
performance,” in ACM SIGCOMM 2006, September 2006.

[4] T. Griffin and G. Wilfong, “On the correctness of iBGP configuration,”
in ACM SIGCOMM 2002, August 2002.

[5] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID Separation
Protocol (LISP),” March 2009, internet draft, draft-farinacci-lisp-12.txt,
work in progress.

[6] D. Krioukov, K. Claffy, K. Fall, and A. Brady, “On compact routing
for the internet,” ACM SIGCOMM Computer Communication Review
(CCR), vol. 37, no. 3, 2007.

[7] P. Francis, X. Xu, and H. Ballani, “FIB suppression with Virtual Ag-
gregation,” February 2009, internet Draft, draft-francis-intra-va-00.txt,
work in progress.

[8] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Networked Systems Design and Implementation (NSDI),
May 2005.

[9] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP restoration in a tier 1 backbone,” IEEE Network, vol. 18, no. 2,
pp. 13–19, Mar-Apr 2004.

[10] O. Bonaventure, C. Filsfils, and P. Francois, “Achieving sub-50 millisec-
onds recovery upon BGP peering link failures,” IEEE/ACM Transactions
on Networking, vol. 15, no. 5, pp. 1123 – 1135, October 2007.

[11] L. Iannone and O. Bonaventure, “On the cost of caching locator/ID
mappings,” in CoNEXT ’07: Proceedings of the 2007 ACM CoNEXT
conference, December 2007.

[12] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “Bgp routing stability of
popular destinations,” in Proc. Internet Measurement Workshop, 2002.

[13] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in International workshop on
Peer-To-Peer Systems (IPTPS 2002), March 2002.

[14] R. Zhang and M. Bartell, BGP Design and Implementation, 1st ed.
Cisco Press, December 2003.

[15] P. Francis, “A configuration-only approach to shrinking FIBs,” February
2008, presentation at NANOG42’ meeting.

