
Available at: http://hdl.handle.net/2078.1/286860 [Downloaded 2024/05/15 at 15:25:19 ]

"oFIQUIC: Leveraging QUIC in OSPF
for seamless network topology changes"

Rybowski, Nicolas ; Pelsser, Cristel ; Bonaventure, Olivier

ABSTRACT

Link state-routing protocols such as OSPF and ISIS are used in most if not all Internet Service Provider
and enterprise networks. They both rely on flooding to distribute the network topology to all routers. Upon
topology changes, all routers update their forwarding tables asynchronously which leads to transient events
such as micro-loops and packet losses. We propose two improvements to OSPF in an extension called
oFIQUIC. First, we use QUIC to exchange routing information between neighboring routers. Second, we
revisit the OSPF flooding process. Instead of relying entirely on flooding to distribute topology changes,
we establish secure remote QUIC sessions with distant OSPF routers to inform them of topology changes.
This enables oFIQUIC to prevent transient loops by ordering the updates of the forwarding tables of all
routers after a topology change. We add oFIQUIC to the BIRD implementation of OSPF. Our evaluation
demonstrates that oFIQUIC prevents loops and converges quickly in different topologies.

CITE THIS VERSION

Rybowski, Nicolas ; Pelsser, Cristel ; Bonaventure, Olivier. oFIQUIC: Leveraging QUIC in OSPF for seamless
network topology changes.IFIP Networking (du 03/06/2024 au 06/06/2024). In: IFIP Networking Conference,
(2024) http://hdl.handle.net/2078.1/286860

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy


oFIQUIC: Leveraging QUIC in OSPF for seamless
network topology changes

Nicolas Rybowski∗†§, Cristel Pelsser†, Olivier Bonaventure∗†
∗WEL Research Institute, Wavre, Belgium

†UCLouvain (ICTEAM), Louvain-la-Neuve, Belgium
firstname.lastname@uclouvain.be

Abstract—Link state-routing protocols such as OSPF and IS-
IS are used in most if not all Internet Service Provider and
enterprise networks. They both rely on flooding to distribute
the network topology to all routers. Upon topology changes,
all routers update their forwarding tables asynchronously which
leads to transient events such as micro-loops and packet losses.

We propose two improvements to OSPF in an extension called
oFIQUIC. First, we use QUIC to exchange routing information
between neighboring routers. Second, we revisit the OSPF flood-
ing process. Instead of relying entirely on flooding to distribute
topology changes, we establish secure remote QUIC sessions with
distant OSPF routers to inform them of topology changes. This
enables oFIQUIC to prevent transient loops by ordering the
updates of the forwarding tables of all routers after a topology
change. We add oFIQUIC to the BIRD implementation of OSPF.
Our evaluation demonstrates that oFIQUIC prevents loops and
converges quickly in different topologies.

Index Terms—OSPF, IS-IS, routing protocols

I. INTRODUCTION

Modern networks are largely over-provisioned [1], [2].
They are designed to absorb peak hours traffic and large
instantaneous spikes. During the COVID19 pandemic, most
networks supported the significant changes in traffic patterns
caused by massive remote work [3]. The extra bandwidth
present in today’s networks enables to cope with equipment
failures by rerouting traffic on alternate paths. It also permits
network maintenances in a make-before-break manner where
load is directed away from the device to be maintained and
then returned to the original path after the operation. Further, to
reduce the energy consumption of networks one can envisage
to temporarily turn some links down and re-enable them when
needed [2].

OSPF [4] and ISIS [5] are routing protocols commonly used
by ISP and enterprise networks to determine the forwarding
paths within their network. These protocols are link-state
routing protocols. With these two protocols, all routers build
a directed graph that represents the entire network topology.
Using Dijkstra’s shortest path algorithm, each router can
locally compute its forwarding table. However, after a topol-
ogy change, micro-loops can occur while the protocol is re-
converging. Such micro-loops frequently appear in operational
networks [6]. To mitigate these micro-loops, router vendors

§This work has been partially supported by the Walloon Region as part of
the funding of the FRFS-WEL-T strategic axis.

tune their implementations of OSPF and IS-IS to reduce their
convergence time [7] or rely on fast-reroute techniques [8],
[9] such as Loop-Free Alternates [10], [11], Remote LFA
[12] and more recently the TI-LFA [13]. The fast reroute
techniques allow to quickly reroute packets around the failed
link, while the underlying routing protocol converges to an
updated network state. These solutions mitigate micro-loops or
their effect but do not remove their occurrences. Researchers
have proposed several techniques to prevent those micro-
loops [14], [15] but they have not been adopted by the IETF.
For pure IP networks, the IETF adopted a framework for
ordering forwarding table updates [16] and then a timer-based
solution [17]. The latter solution increases the convergence
time of the protocol. Here we adopt an approach inspired from
the ordering of forwarding table updates [15].

In parallel, most Internet applications have evolved from
using TCP to TLS over TCP [18]. Some applications have
started to complement TCP by QUIC. QUIC [19] was initially
designed with HTTP in mind. It runs above UDP and includes
the same security features as TLS 1.3 [18]. From a reliability
viewpoint, QUIC is on par with modern TCP implementations
[20]. In addition to HTTP/3, QUIC is used to support DNS
[21], iCloud private relay [22], [23] and the IETF explores its
utilization for live-streaming, gaming and media conferencing
[24]. OSPF and IS-IS still use their own transport layer despite
the security benefits that secure transports such as TLS over
TCP or QUIC could bring. Integrating routing protocols with
QUIC is a work still in early development stages [25].

In this paper, we propose a new approach to prevent micro-
loops upon topology changes in pure IP networks. Instead of
relying on vanilla flooding to distribute link state packets and
letting routers update their forwarding tables asynchronously,
each router informs routers of a topology in a specific order.
This approach requires setting up temporary OSPF sessions
with distant routers. To ensure that routers exchange this
information securely, we use QUIC. In a nutshell, when
activating or disabling a link, the head-end router derives an
ordering for distant routers to update their forwarding tables
that guarantees the absence of micro-loops. It then follows this
ordering to contact each router and send the new link-state
packet. Although our prototype works with OSPF, a similar
approach could be used with IS-IS.

This paper is organized as follows. We first explain in
Section II why re-configuring topologies without introducingISBN 978-3-903176-63-8 © 2024 IFIP



transient events such as micro-loops is important. Section III
provides insights on the oFIQUIC design. We explain how we
integrated QUIC in an OSPFv3 implementation, how updates
ordering is derived and how the ordered FIB update process is
implemented. We present in Section IV the DUNE framework
we developed for precise emulation measurements. Its ability
to perform this task is showcased by measuring micro-loops
triggered by OSPF in a simple topology. We then evaluate in
Section V the behavior of our oFIQUIC prototype on different
topologies by leveraging the DUNE framework. Finally, we
conclude in Section VI.

II. MOTIVATION

The topology of an enterprise or ISP network is not static.
There are several reasons why network operators change the
topology of their network. First, network operators may need
to add or remove physical links [1], [26], [27]. This is a
relatively rare event in network backbones [1] but a more
frequent one at the edge to add or remove customer or peering
links. The former events are handled by the link-state routing
protocols while the latter mainly affect BGP. In the coming
years, it is possible that backbone networks will become more
dynamic. If the IP network runs above a managed optical
network, the network operator can easily add a new link
between two routers by reconfiguring the optical network.
Furthermore, backbone networks are heavily over provisioned
[1]. Researchers have proposed to disable lightly used links
during non-peak periods to minimize the energy consumption
of backbone networks [28].

A second reason to modify a network topology is when
the bandwidth of some links is increased or decreased. Most
network operators configure their OSPF metric in function of
the link bandwidth. Any change in link bandwidth will result
in a topology change. These bandwidth changes are often
performed by reconfiguring the underlying optical network.
For network operators that manage both the IP and the optical
network, those changes can be frequent.

A third reason to modify the topology of a backbone
network is for traffic engineering purposes. Researchers have
proposed various techniques to optimize the OSPF metrics
[29], [30] to redirect flows away from congested links. These
techniques usually start from an estimation of the traffic matrix
and produce a set of OSPF metrics which can be changed to
reduce congestion. Some techniques also minimize the number
of metrics that need to be changed [31].

The last cause for topology changes are the link failures.
These events are frequent in large networks [26], [32].

Upon a topology change, OSPF routers react by flooding
updated Link State Advertisements (LSAs) reflecting the new
network state. This flooding process is, by design, unordered.
After a topology change, all routers update their FIB in a
random order which mainly depends on the arrival time of
the new LSA on each router and the time required to process
it. This can lead to transient states during which the global
data-plane is unstable due to transient loops. Such situation is
illustrated in Figure 1a, where all links have a unit metric.

0 1

2 3

(a) Metric increment of 1 → 0

0 1

2 3

(b) Metric increment of 0 → 1

Fig. 1: Transient forwarding loops on a simple topology.
Each link is configured with a metric of 1. Pre-convergence
ECMP paths are show in red. Dotted lines show updated post-
convergence paths.

Red arrows show the paths used by Node 3 to reach the
other nodes. For example, Node 3 reaches Node 0 through
Nodes 1 and 2. Now, consider that we reconfigure the link
between Nodes 0 and 1 to use a metric of 10. Node 1 updates
its FIB and redirects the packets destined to Node 0 via
Node 3, as shown by the dotted line in Figure 1a. However,
Node 3 did not update its FIB yet, hence bouncing the packets
back to Node 1. This transient loop, also called micro-loop,
will last until Node 3 receives the new router-LSA of Node 1
and updates its FIB accordingly. In the best case, packets loop
for a very short duration and this only creates some reordering.
However, in the worst case, the loop can last long enough so
that the TTL of the forwarded packets reaches 0. In that case,
the packets are dropped, and the loop becomes a transient
blackhole. In the above example, the loop can be prevented
provided that Node 3 updates its FIB before Node 1. A similar
micro-loop happens in Figure 1b between Nodes 0 and 2. It
is avoided if Node 2 updates its FIB before Node 0.

Researchers have shown that it is possible to prevent all
transient loops after a topology change by ordering the FIB
updates on all the routers that are affected by the change [14],
[15], [33]–[35]. The ordering depends on the type of topology
change (metric increase or decrease, addition or removal of
a node, . . . ). The IETF and router vendors discussed these
ordering techniques [36] and came up with two possible
approaches. A first approach is to use a dedicated protocol to
compute the ordering of the FIB updates [16]. However, this
solution has never been specified for OSPF or IS-IS. Later,
the IETF adopted a simpler solution [17] that delays the FIB
updates on some nodes to prevent micro-loops. Unfortunately,
this approach only works for a subset of the changes where a
link metric increases.

III. THE DESIGN OF OFIQUIC

A key design choice of link-state routing protocols such as
OSPF and IS-IS is that routing sessions are only established
between direct neighbors. An OSPF router never interacts di-
rectly with a router that is several hops away. It only exchanges
its link state information with its direct neighbors. oFIQUIC
changes this assumption. As explained in the previous section,
it is possible to prevent micro-loops by ordering the updates
of the FIB of the routers. To realize this ordering, an oFIQUIC
router can create a temporary routing session with a distant
router to request it to update its FIB for a specific change.



oFIQUIC uses QUIC to create this temporary routing session
for two reasons. First, QUIC is implemented entirely in user
space. This implies that a router implementation can easily
add the required libraries to support QUIC without requiring
any kernel change. Second, QUIC fully supports TLS 1.3.
In particular, and even if this is not important for HTTP/3,
QUIC supports client certificates. In a network, routers should
only accept routing information from trusted routers. oFIQUIC
requires the network operator to assign certificates to each
OSPF router and validates the client certificates when a routing
session starts. This enables oFIQUIC to securely establish
routing sessions between direct and remote neighbors. This
provides as good security as state-of-the-art techniques used
by OSPF implementations (keyed MD5 [4], keyed SHA [37]
or IPSec tunnels [38]). In addition, QUIC provides faster
recovery from packet losses than vanilla OSPF loss recovery.

The OSPF specification defines a neighbor discovery
method, called HELLO protocol1. The first part of this protocol
ensures two-way connectivity by exchanging Hello messages.
OSPF nodes embed their router ID in their Hello messages.
They also reflect router IDs present in Hello messages they
receive. When a node sees its own router ID in the Hello
message originated by its neighbor, it transitions to the 2-WAY
state of the OSPF neighbor Finite State Machine (FSM).
This verification ensures that both nodes are able to exchange
messages with their neighbor.

To initiate the QUIC session between two nodes, we
slightly modify the behavior of the OSPF neighbor FSM. We
keep the classical neighbor discovery mechanism based on
Hello messages exchanged over IP. When the state machine
reaches the 2-WAY state, the node with the smallest router
ID asynchronously initiates a QUIC session with its neighbor.
Transition to EXSTART state is blocked until a QUIC stream
is correctly established between both nodes. Once the QUIC
session is connected and the stream established, we change
the communication socket from the IP one to the QUIC
stream one, and transition to the EXSTART state. This method
redirects all subsequent unmodified OSPF messages over the
QUIC routing session. The IP socket is kept open in case
of neighbor failure. Upon transition to the DOWN state, we
fall back on the IP socket so that the neighbor discovery can
restart afterwards. Our use-case is limited to point-to-point
OSPF links. We leave for further work the support for other
types of OSPF links.

A. Ordering FIB updates

Previous works explored multiples methods to order IGP
updates. François et al. [15], [17] proposed a solution where
each IGP node estimates the instant at which it has to
update its FIB after receiving an IGP update. This method is
solely based on timers and temporal estimations of neighbors
behavior without explicit feedback. Clad et al. [33], [34] and
François et al. [14] explored another direction to suppress
transient events in case of topology reconfiguration. Their

1RFC2328, Section 10.3. [4]

method relies on ordered sequences of metric updates ensuring
loop-free reconfiguration.

0 1 2

3 4 5

6 7 8

(a) 3× 3 grid.

0

13

8

24

5

6

7

(b) Pre-convergence
rspDAG1→0(0).

0

1

3

8 2

4

5

6

7

(c) Post-convergence
rspDAG1→0(0).

Fig. 2: Simple 3×3 grid topology. Each link metric is unitary.
Figure 2b shows the rspDAG rooted at Node 0 before the
metric increase of link (0,1) while Figure 2c represents the
rspDAG after the change. Green nodes in Figure 2b represent
the sub-rspDAG1→0(0) rooted at Node 1. Red arrows in
Figure 2c indicate inverted edges w.r.t. the pre-convergence
rspDAG.

Our FIB updates ordering is based on the method defined
by François et al. [15]. It is defined as follows when the
metric of link X → Y needs to be incremented. Node X
recomputes its reverse shortest path Directed Acyclic Graph
(rspDAG) rooted at Y, denoted rspDAGX→Y (Y ). Figure 2b
illustrates rspDAG1→0(0) computed by Node 1 for the net-
work shown in Figure 2a. The set of nodes belonging to the
sub-rspDAGX→Y (Y ) rooted at node X might be affected by
the link X → Y reconfiguration. Green nodes in Figure 2b
represent the sub-rspDAG1→0(0) rooted at Node 1. Router
X computes the depth of each node in sub-rspDAGX→Y (Y )
and orders them from the deepest node to the nearest one. If
multiples nodes are found at a same depth, they are ordered
by increasing OSPF router ID. For example, the ordered list
computed on rspDAG1→0(0) for the topology of Figure 2a
is [8, 5, 7, 2, 4]. As updates of every node in the rspDAG
are explicitly ordered, we call this method a total ordering.
Upon bidirectional re-configuration (or failure) of link (X,Y ),
both Node X and Node Y compute their rspDAG, respec-
tively rspDAGX→Y (Y ) and rspDAGY→X(X). We define
a scheduling node as a node performing ordered convergence.
In the situation depicted above, Node X and Node Y are
scheduling nodes.

Not every node belonging to the sub-rspDAGX→Y (Y )
will trigger a micro-loop. Solely couples of consecutive nodes
present on post-convergence and pre-convergence path(s)
in the reverse direction trigger loops of size two. Pre-
dicting such inversion requires also computing the post-
convergence rspDAG. Figure 2c shows the post-convergence
rspDAG1→0(0) computed by Node 1. The depth change of
Node 1 from one to three in the rspDAGs indicates a path
modification. The same behavior is observed for Node 2 whose
depth changes from two to four. Comparing their successors
in the post-convergence rspDAG1→0(0) with their predeces-



sors in the pre-convergence rspDAG1→0(0) reveals candidate
loops between Nodes 5 and 2 and Nodes 4 and 1. The final
ordering is computed by comparing pre-convergence and post-
convergence ECMP paths. We iterate on each candidate node
in the pre-convergence sub-rspDAGX→Y (Y ), starting from
the deepest node with the lowest ID. When multiple nodes are
found at the same depth, we order them by increasing router
ID. For a given candidate, we iterate on its pre-convergence
nexthops. We then iterate on the nexthops of each node of this
list in the post-convergence rspDAG. When such nexthop is
our current candidate, we found a loop. If the candidate is not
already present in the ordered list, it is appended.

For the topology defined in Figure 2, this generates the
following exploration. The candidate list, defined by the sub-
rspDAG1→0(0), is [8, 5, 7, 2, 4]. Node 8 is considered first. In
the pre-convergence rspDAG1→0(0), its first nexthop towards
Node 0 is Node 5. Nexthop of Node 5 in the post-convergence
rspDAG is Node 4, Node 5 is thus ignored. The next nexthop
of Node 8 is Node 7. Nexthops of Node 7 towards Node 0 are
unchanged before and after the metric update, hence Node 8 is
ignored. We now consider Node 5 whose first pre-convergence
nexthop is Node 2. In the post-convergence rspDAG, one of the
nexthops of Node 2 is Node 5, we just found a loop. Node 5
and 2 are appended to the ordered list. The next nexthop of
Node 5 in the pre-convergence rspDAG is Node 4, which does
not trigger micro-loops. Nodes 7 and 2 are then explored but
none of them trigger micro-loops. The last explored node is
Node 4. Its first pre-convergence nexthop is Node 1, whose
post-convergence nexthop is Node 4. We found the second
loop, Node 4 is appended to the ordered list but not Node 1
as it is the scheduling node. It is implicitly the last node of the
ordered list, as it triggers its own convergence once each node
of the ordered list has converged. The final ordering collected
is [5, 2, 4]. This method, that we call partial ordering, reduces
the number of nodes to explicitly contact after a change at the
cost of additional computations. Due to space limitation, the
ordering in case of metric decrement (or link recovery) is not
discussed in this paper.

B. oFIQUIC prototype

First, we extend the BIRD implementation of OSPFv3 [39]
with QUIC [40]. This extension allows instantiating secure
routing sessions between OSPF nodes. Second, we leverage
QUIC to contact remote OSPF nodes in an ordered manner
upon topology change. We define a distant node as a node
being explicitly contacted via a QUIC tunnel by a scheduling
node during ordered convergence. Nodes 5, 2 and 4 are distant
nodes in the situation described above.

Both ordering methods described in Section III-A are im-
plemented in a Rust crate. A small Foreign Function Interface
(FFI) is built on top of the crate and the whole library is
statically compiled, so that it is directly embedded in BIRD
as depicted in Figure 3a.

Upon link failure requiring the removal of an adjacency
or a metric increment pushing the traffic away from a link,
ordered FIB updating is triggered on both nodes adjacent

OSPF

QUIC

IP

OSPF

QUIC

IP

FFI FFI

Secure Tunnel

(a) High level design.

0 1 2

3 4 5

6 7 8

(b) Scheduling Node 1 establishes
secure tunnels with distant nodes.

Fig. 3: OSPF over QUIC design. Figure 3b depicts in red
oFIQUIC routing tunnels from Node 1 toward its neighbors.
The dotted tunnel is a remote routing tunnel established by
the scheduling Node 1 towards its distant Node 5.

to the link. The first step is feeding the entire OSPF Link
State DataBase (LSDB) to the ordering module. The module
returns an ordered list of nodes to contact, as described in
Section III-A. The scheduling nodes open asynchronously a
QUIC connection toward each node in the ordered list as
depicted by the red dotted line in Figure 3b. A callback system
allows maintaining the ordering while sending the updated
LSA as soon as QUIC sessions are connected. When the QUIC
stream is established with the distant node, the scheduling
node verifies whether the predecessor of the distant node
in the ordered list already has converged. If it is not the
case, a callback is registered with the predecessor data. If the
predecessor already has converged, or if the distant node is the
first one of the ordered list, the scheduling node immediately
sends its LSA though the QUIC session. Upon reception, the
distant node directly injects the LSA in its LSDB, triggers
the shortest path computation, and updates its RIB and then
its FIB. The distant node replies to the scheduling node with
a convergence notification through the QUIC tunnel. Unlike
vanilla OSPF, the distant nodes do not flood this special LSA.
Upon reception of this notification, the scheduling node closes
the QUIC connection and triggers the callback of the next
distant node in the ordered list. Once the scheduling node
has contacted all the nodes of the list, it can finally safely
update its own FIB. It then increments the sequence number
of the new LSA and floods it through the complete topology.
This last step ensures that every node has the correct LSA
in its LSDB. Receiving this LSA will not trigger any FIB
update resulting in micro-loops thanks to our explicit ordering
method. The topology update is finished after this step. This
is, to our knowledge, the first real implementation of oFIB
[16]. The ordering module is written in 1328 lines of Rust
code, tests included.

We currently only consider single events at a time, which
has two main implications. First, we have at most two schedul-
ing nodes, one at each end of the updated link. Second, distant
nodes are ensured to be reachable during ordered convergence.
Indeed, if a node is unreachable, this would imply another
concurrent event; which is not possible due to our working
hypthesis of single events.



IV. MEASURING MICRO-LOOPS DURING OSPF
CONVERGENCE

Evaluating routing protocols implementations requires ei-
ther a physical infrastructure, i.e., a bunch of interconnected
routers, or a virtualized one. Using a physical infrastructure
with a fixed number of routers limits the size of the topolo-
gies on which the prototype may run. Another limitation
is that software runs in real-time with little control on the
operating system, making the timing measurement less repro-
ducible from one run to another. Virtualized infrastructures
are classified in three main categories, (i) simulators, (ii)
emulators and (iii) hybrid approaches combining the best of
both worlds. Discrete-time simulators such as ns-3 [41] or
OMNeT++ [42] provide, by design, the best reproducibility
and timing measurement capabilities. Their main drawback
is that they require models of protocols and do not execute
real protocol implementations. Emulators like mininet [43]
execute unmodified implementations in real-time but do not
allow reproducible timing measurements. Such tools rely on
the underlying kernel for resources allocation. For example,
different emulated routers can run on the same CPU core or an
emulated router may be moved by the Linux scheduler from
one core to another while running time-critical code. Such
undesired events may introduce meaningless delays in timing
measurements of the prototype under test. Hybrid approaches
such as Shadow [44], ns-3-DCE [45] or SimBricks [46] allow
running unmodified protocol implementation on discrete-time
simulators but still present major limitations. The main ones
are (i) requiring network protocol models, hence limiting the
flexibility of the tool when the tested implementation leverages
non-modelled protocols, e.g., Shadow [44] leverages models
of TCP and UDP, (ii) using sometimes old network stacks,
which limits the technologies usable in tested prototypes [47],
(iii) no or little control on resource allocation while emulating
unmodified real-world implementations and (iv) scalability
issues while simulating medium to large scale topologies.

At the time of writing this document, none of the tools
discussed above is mature enough to fit our use-case, i.e.,
measuring precise timing of events triggered by low level
distributed routing protocol implementations in a reproducible
manner. To that end, we developed the lightweight Distributed
Micro Network Emulation (DUNE) framework, by leveraging
Linux kernel resource isolation and allocation capabilities.

The remaining of this section is structured as follows.
First, we describe in Section IV-A the architecture of DUNE.
Then, we showcase in Section IV-B the capabilities of DUNE
by measuring micro-loops during the convergence of vanilla
OSPF after a modification on a simple topology. We confirm
that DUNE is appropriate to detect micro-loops and measure
their duration.

A. Distributed Micro Network Emulation (DUNE) framework

DUNE aims at providing a lightweight emulation framework
allowing relatively precise timing measurements with unmod-
ified network protocols implementations. It leverages native
abilities of the Linux kernel to provide resource allocation

and isolated network stacks. Thanks to this design, tested
prototypes are able to use network protocol implementations of
the underlying kernel. This removes kernel version or protocol
model restrictions that are typical of hybrid simulators.

Figure 4 showcases how a simple triangle topology is
defined within the DUNE framework. Network nodes are
represented by isolated processes and a dedicated network
stack, provided by a Linux network namespace. In order to
isolate such processes, hyper-threading is physically disabled
and the Linux kernel is configured using the isolcpus
parameter. Every CPU core, except one on which the kernel
runs, is unusable by the Linux scheduler. Network node
processes are then explicitly pinned to cores belonging to
a same NUMA node. Such configuration removes unwanted
delays introduced by the Linux scheduler and allows improved
temporal proximity for the processes of a given network node.
Links are emulated using virtual Ethernet (veth) pairs whose
properties, i.e., latency and bandwidth, are configured with tc.

Nodex

Network
namespace

CPUx
process

Pinned process

ethx ethy

veth pair

Node0

CPU1

BIRD

CPU2
QUIC

eth0

eth1

Node1

CPU3

BIRD

CPU4
QUIC

eth0 eth1

Node2

CPU5

BIRD

CPU6
QUIC

eth0

eth1

Fig. 4: DUNE-based oFIB prototype deployment on a simple
triangle topology.

DUNE provides orchestration and experiment automation
primitives to the users. The framework takes as input a
topology description and outputs the commands required to
configure the provided topology on off-the-shelf servers. It also
launches the pinned network node processes. The framework
renders user-defined templates based on the provided network
topology. For example, users may provide a single configu-
ration template of a routing daemon and DUNE generates the
configuration of each router. Finally, the framework produces
binaries of the implementation under test based on a build
environment defined by the user. All in all, DUNE allocates
hardware and software resources so that unrelated delays are
suppressed. It greatly decouples a protocol implementation to
test from its underlying testbed.

B. Experimental framework and evaluation methodology

In a given topology, each link is configured as a point-
to-point link whose link-LSAs are disabled. We configure
a unitary metric on each link and set the HELLO timer to
5 s. BIRD’s internal timer is configured to 10ms. We use
unnumbered interfaces and assign an IPv6 address to the
loopback of each router, which is the sole prefix they advertise.
Links latency is configured to 5ms. After starting OSPF on
each node, the experiment is left untouched during 30 s to let



OSPF converge. Then, the metric of the target link is raised
from 1 to max metric−1. We let OSPF re-converge for 30 s
then stop the experiment. We define the convergence duration
as the duration between the instant at which the reconfiguration
is effective on the first node and the instant of the last FIB
update in the network. During each experiment, we listen to
the netlink socket of the FIB on each node. Every received
message is associated with an epoch. During post-processing,
the collected FIB updates are ordered by epoch, providing a
global timeline of updates for the whole topology. At each step
of the timeline, we incrementally build the FIB of the node that
received the update. Hence, we explore the global forwarding
plane state, update by update. After the initial convergence,
we rebuild all ECMP routes from each node to each node.
This method allows the detection of micro-loops. We test
each set of parameters defining an experiment ten times.
The experiments described in this section are performed on
a single server embedding dual Intel Xeon E5-2687W
v3@3.10GHz, for a total of 20 physical cores. The server is
running Debian 12.

0
1

2

3

45

6

7

8

(a) Link 0 → 1 configuration.

0
1

2

3

45

6

7

8

(b) Link 1 → 0 configuration.

Fig. 5: Simple ring of 9 routers. Each link metric is unitary.
Paths from each node toward Node 1 are shown before (black)
and after (red) the metric reconfiguration of link 0 → 1
in Figure 5a. Such paths toward Node 0 are shown for
reconfiguration of link 1 → 0 in Figure 5b.

First, we evaluate a simple ring topology of 9 routers. The
paths from every node to Node 1 are depicted in Figure 5a
using black arrows. We measure the micro-loops duration
during OSPF convergence after re-configuring the metric of
link (0, 1).

(0, 8) (7, 8) (6, 7)
Loops

3

4

5

6

7

8

Lo
op

D
ur
at
io
n
[m

s]

(a) Metric change.

(0, 8) (1, 2) (7, 8) (2, 3) (6, 7) (3, 4)
Loops

3

4

5

6

7

8

Lo
op

D
ur
at
io
n
[m

s]

(b) Link change.

Fig. 6: Duration of each micro-loop detected during OSPF
re-convergence in the 9-routers ring topology after link (0, 1)
metric re-configuration.

a) Metric change: We first consider the case where
the metric is modified only in direction 0 → 1. For this
experiment, the median convergence duration over ten runs
is 27.211ms. Figure 5a shows the post-convergence paths
as well as the potentially introduced micro-loops in red.
Figure 6a shows the duration of the observed loops after
the metric reconfiguration of link 0 → 1. It illustrates that
every micro-loop predicted in Figure 5a happens in real-
world executions. Loop (0, 8), which is the nearest of the
reconfigured link, is the longest of the detected loops. This
is explained by the operations performed by Node 0. After
the metric reconfiguration, it updates its RIB and originates a
new LSA reflecting the update. Then, it recomputes its best
routes and updates its FIB accordingly. Finally, it floods the
newly originated LSA through the topology. Nodes 8, 7 and 6
require fewer operations. Upon new LSA reception, they inject
it in their LSDB and then immediately flood it. Afterwards,
they recompute their best routes and update their FIBs. The
key element is that nodes neighboring the reconfiguration first
update their FIB then flood the update while distant nodes
flood the update before updating their FIB. Loop (0, 8) begins
after the FIB update of Node 0 and ends after the FIB update
of Node 8. Both events are delayed by the link latency and
internal OSPF operations, in particular by the duration of
the FIB update which directly depends on the number of
routes to update. We count a total of 10 FIB updates within
the complete topology during the re-convergence phase. They
are divided as follows; four for Node 0, three for Node 8,
two for Node 7 and one for Node 6. As we observe in
Figure 6a, the most important factor of a micro-loop is the
cumulated link latency between the nodes defining the loop,
here 5ms. Hence, high latency links such as transatlantic
ones, may have a dramatic impact on the duration of micro-
loops. The experienced latency also validates our measurement
methodology as the median duration of loops (7, 8) and (6, 7)
are close to the link delay in our setup. Over the ten runs it
lies around 5ms.

b) Link change: We now consider the case where the
link metric is updated in both directions. The second end of
the link is reconfigured between 3ms and 4ms after the first
end. This setup, referred to as link change, may emulate a link
failure with active data-plane protection, as traffic on the link
is not interrupted while the link is being removed from the
topology. The median convergence duration over ten runs is
28.892ms, which is a bit longer than in the metric change case
as expected. Figure 6b shows the duration of each micro-loop
predicted in Figures 5a and 5b. Similarly to the metric change
case, the longest loops (0, 8) and (6, 7) are directly adjacent to
the updated link. Their median duration is around 6ms while
it is 5ms for distant loops. The median duration for loops
(0, 8), (6, 7) and (7, 8) is very similar in both the link change
(Figure 6b) and metric change (Figure 6a) cases. We observe
20 FIB updates. Since the topology is perfectly symmetric, it
is expected that both nodes neighboring the update trigger the
same amount on FIB updates in the network.



V. EVALUATING OFIQUIC

The quite small variance in micro-loops duration shown in
Figure 6 indicates that our emulation framework is precise
enough to consistently measure short-lived events triggered
by routing protocols in a network. Showing every detected
micro-loop for each evaluated topology would be cumbersome.
Hence, in the remaining of this document, we only outline
the duration of the loop that is the longest in the largest
number of runs. We now leverage the DUNE framework to
compare the behavior of our oFIB implementation with OSPF
on simple synthetic (Section V-A, Section V-B) and a real-
world (Section V-C) network topologies.

A. Evaluating oFIQUIC on a simple ring

We evaluate our oFIQUIC prototype on the 9-nodes ring
(Figure 5) where Nodes 0 and 1 are scheduling nodes. Our
oFIQUIC prototype successfully suppresses the micro-loops
triggered by OSPF. In Figure 5a, Nodes 6, 7 and 8 are distant
nodes explicitly contacted via QUIC tunnels by scheduling
Node 0. Due to the structure of the topology, the total and
partial ordering methods produce the same ordered list of
distant nodes. Hence, both ordering methods should produce
similar timing results.

Metric Link
Change type

150

155

160

165

C
on

ve
rg
en

ce
du

ra
tio

n[
m
s]

Partial oFIB
Total oFIB

Fig. 7: Convergence duration for partial and total ordering of
oFIQUIC on the 9-routers ring. Both metric and link change
are shown.

Figure 7 shows the convergence duration of oFIQUIC for
both partial and total ordering. In the metric change case, the
median convergence duration on ten runs is 152.733ms for
partial ordering against 153.263ms for total ordering. In the
link change case, the median convergence duration on ten runs
is 155.676ms for partial ordering against 156.474ms for total
ordering. This difference is considered negligible as expected.
The duration difference between metric and link change cases
is explained by the varying delays between convergence start
on both scheduling nodes.

Figure 8 shows the main temporal contributions for partial
oFIQUIC ordering during link (0, 1) change in the 9-routers
ring. We first consider the contributions for scheduling Node 0.
Upon link reconfiguration, Node 0 computes distant nodes
ordering [6, 7, 8], as defined by the micro-loops predicted in
Figure 5a. It asynchronously opens a QUIC session with each
of them. The nearest the distant node is from the scheduling
node, the quicker the QUIC session is established. Node 6,

6 7 8
Distant node

0

50

100

150

200

250

St
ep

du
ra
tio

n
[m

s]

Scheduling Node 0

4 3 2
Distant node

Scheduling Node 1

Connection LSA sending Convergence
notification

Fig. 8: Temporal contribution of every oFIQUIC step during
metric re-configuration of link (0, 1) with partial ordering.

which is the first to be updated, is the last whose session
is effectively established as it is the furthest. After sending
its newly originated LSA, Node 0 waits for the convergence
notification from the distant node. This step is the longest
for distant Node 6 as it is the furthest. Again, the nearest
the distant node is from the scheduling node, the quicker
this step is accomplished. The median duration for updating
Node 6 over ten runs is 101.826ms. Median contributions for
scheduling Node 1 are very similar as for Node 0 since the
topology is perfectly symmetric.

B. Evaluating oFIQUIC on a simple 3× 3 grid

We evaluate our oFIQUIC prototype on a simple 3× 3 grid
topology depicted in Figure 2a.

Metric Metric
Back.

Link

Change type

0

2

4

6

Lo
op

du
ra
tio

n
[m

s]

Partial oFIB
Total oFIB
OSPF

(a) Most frequent longest loop.

Metric Metric
Back.

Link

Change type

50

100

150

200

250

C
on

ve
rg
en

ce
du

ra
tio

n[
m
s]

Partial oFIB
Total oFIB

(b) Convergence duration.

Fig. 9: Most frequent longest loop duration (9a) measured
during metric re-configuration of link (0, 1) and convergence
duration (9b) of oFIQUIC on the 3× 3 grid (Figure 2a).

Figure 9a shows the duration of the most frequent longest
loop averaging around 6ms during the metric update of
link (0, 1). We observe that oFIQUIC successfully suppresses
all micro-loops. Figure 9b depicts the convergence duration
of oFIQUIC. It validates that partial ordering can perform
significantly better than total ordering, as seen in the con-
vergence duration for link (0, 1) metric re-configuration. In
the case of metric change in the 1 → 0 direction (noted
Metric. Back. in Figure 9b), the median duration is 221.381ms
for total ordering and 120.736ms for partial ordering. This
difference is explained by the oFIQUIC contributions depicted
in Figure 10. Total ordering forces Node 1 to contact five
distant nodes (Figure 10a), with Node 8 being the furthest at



8 5 7 2 4
Distant node

0

50

100

150

200

250
St
ep

du
ra
tio

n
[m

s]
Scheduling Node 1

Connection
LSA sending
Convergence
notification

(a) Total ordering

5 2 4
Distant node

0

50

100

150

200

250

St
ep

du
ra
tio

n
[m

s]

Scheduling Node 1
Connection
LSA sending
Convergence
notification

(b) Partial ordering

Fig. 10: oFIQUIC contributions during metric re-configuration
of link 1 → 0

three hops. Establishing a QUIC session and waiting for an
explicit convergence notification takes 112.399ms, which is
quite costly knowing that this node does not trigger transient
events while receiving the new LSA. On the other hand with
partial ordering, the scheduling node contacts three distant
nodes (Figure 10b) whose furthest Node 5 is two hops away.
Successfully triggering re-convergence on this distant node
takes on average 72.773ms. Contacting mainly nearby distant
nodes allows nearly halving the convergence time in this
situation.

C. Evaluating oFIB on Abilene

We evaluate our oFIQUIC prototype on the Abilene topol-
ogy2 depicted in Figure 11.

Washington
 DC

Atlanta

0
1

2

3

4

5

6 7

8

9

10
Denver

Chicago

Kansas City

Seattle

Sunnyvale

Los Angeles

Houston

Indianapolis

New York

Fig. 11: Abilene network.
Figure 12a shows the duration of the most frequent longest

micro-loop detected upon the metric reconfiguration of the link
between Denver and Kansas City. It averages around 7ms for
OSPF while oFIQUIC successfully suppresses all micro-loops.
Convergence duration for this update is depicted in Figure 12b.
It mainly depends on the number of distant nodes needed
to be contacted by scheduling nodes. This is clearly visible
for the metric change of link Denver → Kansas City, noted
Metric. on Figure 12b. By looking at oFIQUIC contributions
of scheduling node Denver, it contacts a single distant node
in partial ordering (Figure 14) against two in total ordering
(Figure 13). However, in the case of metric change of the link
Kansas City → Denver (noted Metric. Back. in Figure 12b), the

2https://web.archive.org/web/20120324103518/http://www.internet2.edu/
pubs/200502-IS-AN.pdf

Metric Metric
Back.

Link

Change type

0.0

2.5

5.0

7.5

10.0

Lo
op

du
ra
tio

n
[m

s]

Partial oFIB
Total oFIB
OSPF

(a) Most frequent loop duration.

Metric Metric
Back.

Link

Change type

100

200

300

C
on

ve
rg
en

ce
du

ra
tio

n[
m
s]

Partial oFIB
Total oFIB

(b) Convergence duration.

Fig. 12: Performance evaluation upon metric reconfiguration
of link between Denver and Kansas City in Abilene.

scheduling node contacts three distant nodes in partial ordering
against six in total ordering. This contribution is also the most
significant in the link change case.

3 4
Distant node

0

50

100

150

200

250

St
ep

du
ra
tio

n
[m

s]

Scheduling Node 6

0 2 1 9 8 10
Distant node

Scheduling Node 7

Connection LSA sending Convergence
notification

Fig. 13: oFIQUIC contribution with total ordering upon met-
ric reconfiguration of the link between Denver (Scheduling
Node 6) and Kansas City (Scheduling Node 7) in Abilene.

4
Distant node

0

50

100

150

200

250

St
ep

du
ra
tio

n
[m

s]

Scheduling Node 6

9 10 8
Distant node

Scheduling Node 7

Connection LSA sending Convergence
notification

Fig. 14: oFIQUIC contribution with partial ordering upon
metric reconfiguration of the link between Denver (Scheduling
Node 6) and Kansas City (Scheduling Node 7) in Abilene.

D. Performance considerations of oFIQUIC

With this evaluation, we showed that oFIQUIC successfully
suppresses micro-loops during OSPF convergence. We observe
that the main temporal cost of oFIQUIC is the establishment
of a QUIC session with the furthest distant node(s). This step,
which depends on the RTT between the scheduling node and
the distant node(s), delays the global ordered convergence. The



second temporal cost is the time waited before receiving the
convergence notification. It also highly depends on the link
delays. VI. CONCLUSION

Link-state routing protocols such as OSPF rely on flooding.
This ensures that all routers eventually receive all topology
changes. Unfortunately, link-state routers update their forward-
ing tables asynchronously after each topology change which
can result in transient forwarding loops.

In this paper, we propose oFIQUIC an extension to the
OSPF protocol which brings two innovations. First, oFIQUIC
uses the QUIC protocol instead of OSPF’s specialized trans-
port layer to exchange link state information between neigh-
boring routers. This prevents various packet injection attacks
and allows OSPF to benefit from QUIC’s finely tuned re-
liability mechanisms. Second, oFIQUIC supports loop-free
convergence after topology changes. When a topology change
occurs, a scheduling router computes a loop-free ordering to
update the forwarding table of all routers affected by the
change. It then contacts each affected router using a secure
QUIC session such that the forwarding tables are updated in an
order that prevents loops. We implement oFIQUIC inside the
BIRD routing daemon. Our evaluation in the DUNE evaluation
framework shows that oFIQUIC prevents loops while ensuring
a fast convergence. Artefacts of the paper are available
at https://github.com/nrybowski/ofiquic-artefacts. Our further
work will be to explore in more details how OSPF and
other routing protocols could benefit from a secure transport
protocol such as QUIC.

REFERENCES

[1] M. Piraux et al., “Revealing the evolution of a cloud provider through
its network weather map,” in Proceedings of the 22nd ACM Internet
Measurement Conference, 2022, pp. 298–304.

[2] R. Jacob et al., “Does rate adaptation at daily timescales make sense?”
in HotCarbon’23. New York, NY, USA: ACM, 2023.

[3] A. Feldmann et al., “The lockdown effect: Implications of the covid-19
pandemic on internet traffic,” in IMC’20. New York, NY, USA: ACM,
2020, p. 1–18.

[4] J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998.
[5] H. Gredler et al., The complete IS-IS routing protocol. Springer Science

& Business Media, 2005.
[6] P. Merindol et al., “A fine-grained multi-source measurement

platform correlating routing transitions with packet losses,” Computer
Communications, vol. 129, pp. 166–183, 2018.

[7] P. Francois et al., “Achieving sub-second IGP convergence in large IP
networks,” ACM SIGCOMM CCR, vol. 35, no. 3, pp. 35–44, 2005.

[8] M. Shand et al., “IP Fast Reroute Framework,” RFC 5714, Jan. 2010.
[9] M. Chiesa et al., “A survey of fast-recovery mechanisms in packet-

switched networks,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 2, pp. 1253–1301, 2021.

[10] A. Atlas et al., “Basic Specification for IP Fast Reroute: Loop-Free
Alternates,” RFC 5286, Sep. 2008.

[11] C. Filsfils et al., “Loop-Free Alternate (LFA) Applicability in Service
Provider (SP) Networks,” RFC 6571, Jun. 2012.

[12] S. Bryant et al., “Remote Loop-Free Alternate (LFA) Fast Reroute
(FRR),” RFC 7490, Apr. 2015.

[13] A. Bashandy et al., “Topology Independent Fast Reroute using Segment
Routing,” IETF, draft-ietf-rtgwg-segment-routing-ti-lfa-13, Jan. 2024.

[14] P. Francois et al., “Disruption free topology reconfiguration in OSPF
networks,” in IEEE INFOCOM 2007-26th IEEE International Confer-
ence on Computer Communications. IEEE, 2007, pp. 89–97.

[15] ——, “Avoiding transient loops during the convergence of link-state
routing protocols,” IEEE/ACM Transactions On Networking, vol. 15,
no. 6, pp. 1280–1292, 2007.

[16] M. Shand et al., “Framework for Loop-Free Convergence Using the
Ordered Forwarding Information Base (oFIB) Approach,” RFC 6976,
Jul. 2013.

[17] S. Litkowski et al., “Micro-loop Prevention by Introducing a Local
Convergence Delay,” RFC 8333, Mar. 2018.

[18] M. Thomson et al., “Using TLS to Secure QUIC,” RFC 9001, May
2021.

[19] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in Proceedings of the conference of ACM SIGCOMM,
2017, pp. 183–196.

[20] J. Iyengar et al., “QUIC Loss Detection and Congestion Control,” RFC
9002, May 2021.

[21] C. Huitema et al., “DNS over Dedicated QUIC Connections,” RFC
9250, May 2022.

[22] M. Trevisan et al., “Measuring the performance of icloud private relay,”
in PAM. Springer, 2023, pp. 3–17.

[23] P. Sattler et al., “Towards a tectonic traffic shift? investigating apple’s
new relay network,” in Proceedings of the 22nd ACM IMC, 2022, pp.
449–457.

[24] L. Curley et al., “Media over QUIC Transport,” Internet Engineering
Task Force, Internet-Draft draft-ietf-moq-transport-01, Oct. 2023, work
in Progress.

[25] T. Wirtgen et al., “Routing over quic: Bringing transport innovations to
routing protocols,” arXiv preprint arXiv:2304.02992, 2023.

[26] D. Watson et al., “Experiences with monitoring OSPF on a regional
service provider network,” in 23rd ICDCS proceedings. IEEE, 2003,
pp. 204–213.

[27] S. Lee et al., “To automate or not to automate: on the complexity of
network configuration,” in IEEE ICC. IEEE, 2008, pp. 5726–5731.

[28] R. Jacob et al., “The internet of tomorrow must sleep more and grow
old,” ACM SIGENERGY, vol. 3, no. 3, pp. 27–32, 2023.

[29] B. Fortz et al., “Traffic engineering with traditional IP routing protocols,”
IEEE communications Magazine, vol. 40, no. 10, pp. 118–124, 2002.

[30] A. Sridharan et al., “Achieving near-optimal traffic engineering solu-
tions for current OSPF/IS-IS networks,” IEEE/ACM Transactions On
Networking, vol. 13, no. 2, pp. 234–247, 2005.

[31] B. Fortz et al., “Optimizing ospf/is-is weights in a changing world,”
IEEE JSAC, vol. 20, no. 4, pp. 756–767, 2002.

[32] A. Markopoulou et al., “Characterization of failures in an operational IP
backbone network,” IEEE/ACM ToN, vol. 16, no. 4, pp. 749–762, 2008.

[33] F. Clad et al., “Graceful convergence in link-state IP networks: A
lightweight algorithm ensuring minimal operational impact,” IEEE/ACM
ToN, vol. 22, no. 1, pp. 300–312, 2013.

[34] ——, “Computing minimal update sequences for graceful router-wide
reconfigurations,” IEEE/ACM ToN, vol. 23, no. 5, pp. 1373–1386, 2014.

[35] K.-T. Foerster et al., “Survey of consistent software-defined network
updates,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1435–1461, 2018.

[36] M. Shand et al., “A Framework for Loop-Free Convergence,” RFC
5715, Jan. 2010.

[37] M. Fanto et al., “OSPFv2 HMAC-SHA Cryptographic Authentication,”
RFC 5709, Oct. 2009.

[38] M. Gupta et al., “Authentication/Confidentiality for OSPFv3,” RFC
4552, Jun. 2006.

[39] D. Ferguson et al., “OSPF for IPv6,” RFC 5340, Jul. 2008.
[40] J. Iyengar et al., “QUIC: A UDP-Based Multiplexed and Secure

Transport,” RFC 9000, May 2021.
[41] T. R. Henderson et al., “Network simulations with the ns-3 simulator,”

SIGCOMM demonstration, vol. 14, no. 14, p. 527, 2008.
[42] A. Varga et al., “An overview of the omnet++ simulation environment,”

in 1st International ICST SIMUTOOLS, 2010.
[43] B. Lantz et al., “A network in a laptop: rapid prototyping for software-

defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, 2010, pp. 1–6.

[44] R. Jansen et al., “Co-opting linux processes for {High-Performance}
network simulation,” in USENIX ATC’22, 2022, pp. 327–350.

[45] H. Tazaki et al., “Direct code execution: Revisiting library os archi-
tecture for reproducible network experiments,” in Proceedings of ACM
CoNEXT’13, 2013, pp. 217–228.

[46] H. Li et al., “Simbricks: end-to-end network system evaluation with
modular simulation,” in Proceedings of the ACM SIGCOMM 2022
Conference, 2022, pp. 380–396.

[47] N. Rybowski et al., “Evaluating ospf convergence with ns-3 dce,” in
Proceedings of the 2022 Workshop on ns-3, 2022, pp. 120–126.


