
Fault-adaptive Scheduling for Data Acquisition
Networks

Eloise Stein
U. Strasbourg and CERN, France

eloise.stein@etu.unistra.fr

Quentin Bramas
U. Strasbourg, France

bramas@unistra.fr

Tommaso Colombo
CERN, France

tommaso.colombo@cern.ch

Cristel Pelsser
UCLouvain, Belgium

cristel.pelsser@uclouvain.be

Abstract—Supporting such an all-to-all traffic matrix is chal-
lenging as it can easily lead to congestion. Scheduling pat-
terns are designed to avoid such congestion by spreading the
communications over time. The time is divided in phases and
communications are spread across the phases. However, current
scheduling algorithms are not fault-tolerant. In this paper we
propose a fault-adaptive congestion-free scheduling to support
an all-to-all exchange in fat tree topology. Our approach consist
in the computation of the minimum number of communication
phases required to support the all-to-all exchange with the
available links, and of the scheduling of the communications
on these phases. It enables to recover from failures and makes
optimal use of the remaining bandwidth. We show that our
scheduling approach provides better performance than the most
common approach which is the Linear-shift scheduling. The
throughput is improved by roughly 80% with our approach,
for as little as one link failure.

Index Terms—all-to-all, fat-tree networks, integer linear pro-
gramming

I. INTRODUCTION AND MOTIVATION

The personalized all-to-all exchange is a collective commu-
nication pattern in which each node sends a different message
to every other node participating in the exchange. This pattern,
often used by HPC applications, is also needed by data-
acquisition (DAQ) applications.

Large-scale scientific instruments are made up of a myriad
of independent sensors, each monitoring a small fraction of
the same phenomenon. When the instrument observes multiple
events over time, each sensor produces a time-ordered stream
of data fragments. The DAQ application must then assemble
these fragments into coherent snapshots of each observed
phenomenon. Each node running the DAQ application is
usually responsible for an equal share of the total observed
events. These requirements result in a continuous succession
of all-to-all exchanges. To be more precise, the data arrives at
the servers and then needs to be transmitted to all the other
servers using a fat tree topology, as depicted in figure 1. In
this topology, the servers are located at the bottom.

To makes best use of the available bandwidth in the network,
the full capacity of a link is used for each transmission. If two
communication flows use the same link, there is a congestion
because the two transmissions need to share the capacity of
the link.

Fat-tree networks, such as k-ary-L-tree, are rearrangeably
non-blocking. They are therefore well suited for all-to-all
operations in general [1] and DAQ networks in particular [2].

We consider a variant of such networks which is SFT(L;k,...,k)
or SFT(L;k,...,k,2k) where L is the number of layers and k is
the number of down links connected to each switch at layer L
as depicted in figure 2. We consider such topologies to benefit
from all the links on the switches at the top layer. More details
are provided in section II-C.

Optimal implementations of the all-to-all exchange for
fat-tree networks avoid network congestion by dividing the
exchange into phases. In each phase every end-node sends one
chunk of data and receives another chunk (not necessarily to
and from the same other end-node). The communications are
assigned to each phase so that the communications are spread
over the topology. Existing solutions based on this approach
[1] [3] are effective in minimizing the time-to-completion
of the exchange, especially when the start of each phase is
synchronized [2], but do not degrade gracefully in case of
network link failures. With not enough available links, some
communications belonging to the same phase are forced to
share links, creating congestion and delaying the end of the
phase. In the remainder of this paper, we will call this situation
a conflict.

For example, large-scale DAQ networks at CERN [4] pro-
cess tens of exabytes per year [5] [6], benefiting 12000 physi-
cists [7]. Such networks uses an all-to-all traffic matrix and a
fat-tree topology. Network operators at CERN have recently
performed a failure sensitivity analysis on the operational DAQ
network of the LHCb experiment. The throughput of the LHCb
DAQ application decreases by 10% (least used link failed) up
to 50% (most used link failed) with a single link failure [8],
highlighting the need of solutions that can handle link failures
more gracefully.

In this paper, we design a Fault-adaptive Scheduling solu-
tion for fat-tree data-acquisition networks supporting a con-
tinuous all-to-all traffic pattern. Our solution makes the best
use of the available bandwidth and is robust in the face of
link failures. We focus in particular on enabling the system
to recover from long-duration failures, i.e. failures that last
several hours. This situation is very common in networks [9].

The main contributions of our work are:
• A formula to express the lower bound on the number of

phases in case of failures to ensure the communications
without congestion.

• An all-to-all scheduling algorithm that accounts for link
failures.

• The evaluation of the performance of the solution, espe-
cially in case of failures.

II. BACKGROUND

In this section, we give the formal definition of logical fat-
trees and specialized fat-trees. We also introduce the all-to-all
traffic matrix.

A. All-to-all exchange

All links have the same bandwidth and a flow between a
server source and destination completely fills the bandwidth
of a link. To avoid congestion, the communications are spread
over phases. At each phase, each server sends data to a single
destination. Phases are designed such that communications are
spread over the topology. Each server is provided with the
schedule of the communications for all the phases. Synchro-
nization happens among all servers at the end of each phase
such that communications do not overlap, again to prevent
congestion. When all servers have sent data to all the other
servers, the all-to-all exchange is complete and a new one can
begin.

Definition 1: An all-to-all schedule (or matrix) of length P
is a function σ that associates each phase 0 ≤ p ≤ P − 1
with a set of communication flows σ(p) = {(i, j)} such that
∀i, j ∈ S × S, where S is the set of servers, ∃p, σ(p)(i) = j.
In other words, in the schedule, there exists a phase where
server i sends its data to server j.

The minimum length of an all-to-all schedule when there is
no link failure is obviously |S|, the number of servers.

B. Logical Fat-tree

Logical fat-trees can be described as a traditional tree
structure, where the link capacity increases as we move closer
to the root. The capacity of a link at any level of the fat tree
must be equal to the sum of the capacities of the links at
the preceding level [10]. It is common to only consider trees
where the number of children is the same for all nodes at a
given layer. We use here a definition with notation similar to
previous work [3].

Definition 2: A logical fat-tree LFT (L;M1, . . . ,ML) is a
rooted tree graph of height L + 1, where the set of nodes is
partitioned into L+1 sets VL, VL−1, . . . V0. Each set is a layer
of the tree. Their size is respectively 1, containing only the
root, and then ML (the nodes are layer L), MLML−1 (at layer
L− 1), . . . ,

∏L
i=0 Mi (at layer 0). The link capacity between

a node at layer l and a node at layer l+ 1 is Πl =
∏l

i=1 Mi,
such as a node has enough bandwidth to serve all its children.

C. Specialized Fat-tree

Our specialized fat tree, denoted SFT (L; k, 2k) corre-
sponds to the biggest fat tree with L+ 1 levels one can build
with switches having 2k ports. At each level each switch has k
parents and k children (like in a k-ary-L-tree) but the switches
at level L have 2k children. We call the switches at level L
spine switches; the switches at level 1 are called leaf switches.
In the remaining we always consider without loss of generality
that each link in a specialized fat tree has a capacity of one.

Our specialized fat tree SFT (L; k, 2k) is associated with
the logical fat tree LFT (L; k, . . . , 2k) and we call a group
of switches, the set of switches in the specialized fat tree that
correspond to a given node in the corresponding fat tree. To
avoid confusion, we call LFT-node the corresponding node in
the logical fat tree associated with a group of switches. A
group of switches correspond to a node in the corresponding
fat tree.

For example, figure 1 presents a fat tree LFT (3; 2, 2, 4)
with the servers numbered from 0 to 2 × 2 × 4 − 1 = 15
and Figure 2 presents the corresponding specialized fat tree
SFT (3; 2, 4) supporting the same number of servers.

D. Reduced logical Fat-Tree and Fat-tree

It is interesting to consider reduced logical fat trees and
reduced fat trees. A reduced logical fat tree corresponds to a
fat tree where the bandwidth available is reduced. A reduced
fat tree corresponds to a fat tree where the capacity of some
links is reduced. A reduced fat tree can be useful either
because some links might not require full capacity, or to
simulate a failure. Similarly, a reduced specialized fat tree is
obtained from a specialized fat tree by removing some links.
However, in this case, removing a link in the corresponding
specialized fat tree is not necessarily equivalent to reducing
the capacity by one in the logical fat tree. We now define the
corresponding link capacity of the logical fat tree associated
with a specialized fat tree.

Definition 3: Given a reduced specialized fat tree F , l a
link in the corresponding logical fat tree, and B the set of
servers below this link. We say the capacity of l is c if, for
any source set S ⊂ B and destination set D of size c, such
that D ∩ B = ∅, there exists at least c edge-disjoint paths in
the specialized fat tree from servers in S to servers in D.

III. SCHEDULING WITH FAILURES

In this section we give a lower bound on the length of an
all-to-all schedule in reduced specialized fat-trees. We then
propose an algorithm to schedule the communications in the
number of phases matching the lower bound.

A. Lower bound on the number of phases in case of failure

Our lower bound applies to any logical fat-tree
LFT (L;M1, . . . ,ML). We use the same notations as
in [3]. Consider that the link capacity between a node at
layer l and a node at layer l + 1 is reduced by F , with
1 ≤ l ≤ L − 1 and F < Πl. The minimum number P of
phases to support all these communications is at least

P ≥ max

(
ΠL,

⌈
Πl(ΠL −Πl)

Πl − F

⌉)
(1)

The detailed proof of Equation 1 is omitted due to space
constraints.

0 1 2 3 4 5 6 . . .

g0

g1,(0)

g2,(0,0)

Fig. 1: A logical fat-tree
LFT (3; 2, 2, 4) with three
layers and two down links at layer
one and two, four down links at
layer 3.

g0

g1,(0)

g2,(0,0)

0 1 2 3 4 5 6 . . .

Fig. 2: The associated specialized
fat-tree SFT (3; 2, 4). The servers
are the white leaves and the switches
are filled in black.

B. Scheduling the communications on the added phases

Now that we have the minimum number of phases we need
to schedule the communications on these phases. The sched-
ule, determines server interactions in each phase, ensuring no
two servers communicate simultaneously. By the end of all
phases, every server has communicated with all others.

In this section, we describe our process for computing an
all-to-all schedule to enable routing without congestion. The
bandwidth-optimal all-to-all pattern [3] proposes a schedule
using only half of the full bisection bandwidth. Consequently,
the number of used links is more balanced between the differ-
ent phases compared to linear shift. Although the proposal in
[3] is promising, it does not consider the necessary adaptations
to the schedule upon link failures. Our proposal introduces an
enhanced version of this algorithm that is fault-tolerant and
builds a schedule for a reduced fat-tree. To be more precise,
the proposal in [3] fits all the communications in X phases,
where X is the minimum length of an all-to-all schedule and
the number of servers. Upon failures, additional phases need to
be added. The minimum number of additional phases is given
by the subtraction between the result of equation in 1 and X .
Our proposal is an algorithm to schedule the communications
on these additional phases.

Our algorithm, written in Python, makes sure that the
number of communications to and from each switch does not
exceed the number of links available on that same switch. The
initial schedule results from our implementation of [3]. The
communications on links not affected by the failures are left
untouched. The algorithm then proceeds in two steps. First, it
computes the communications that need to be moved to the
extra phases. Next, we employ a Integer Linear Programming
(ILP) model using the Gurobi optimizer [11] to distribute
communications across the additional phases required in case
of link failures. Linear programming systematically tests var-
ious solutions to find the most optimized one. However,
an optimization function is unnecessary since the minimum
number of phases in known thanks to Equation 1.

In our ILP model, binary variables represent communica-
tions between server sources and destinations in each phase.

These variables determine if there is scheduled traffic between
two servers during a specific phase. We generate these vari-
ables by iterating through the list of identified communications
to be relocated, which was computed in the initial step of
the algorithm. The scheduling must respect the following
constraints:

• No source server communicates to the same destination
server as another source server during the same phase.

• At the end of all phases every server will have commu-
nicated to every other server.

• Each source communicates only once in each phase.
• The communications from the leaf switch is less than or

equal to its number of available links.
• The communications to the leaf switch is less than or

equal to its number of available links.

IV. EVALUATION AND DISCUSSION

In this section, we present a comprehensive comparison
of our Fault-Adaptive Scheduling (FAS) with other com-
munication patterns. Various all-to-all communication pat-
terns exist, including recursive butterfly, random, and more
[12]. However, the most commonly employed communication
patterns are XOR and linear shift (LS) [3]. Additionally,
we thoroughly evaluate our solution against the bandwidth-
optimized exchange pattern (BO) [3], as it holds great promise
for improving performance and efficiency compared to linear
shift or XOR scheduling patterns.

To simulate the performance of these three scheduling
patterns, we use a simple algorithm to compute the number
of conflicts that arise at each phase. Since these patterns are
algorithmic in nature and the topology is known, the number of
conflicts can be easily predicted. In this simulation, we test the
schedules on the SFT(2;16,32) topology. First, we determine
who talks to whom for each phase based on the selected
pattern. Next, by simulating a failure and determining the
minimum number of available links on at least one leaf switch,
we identify communications that share a link. This is possible
because we know which server is connected to the leaf switch
with a broken link. In other words, if the maximum number
of communications to or from a leaf during a phase is lower
than or equal to the number of links available, there is enough
bandwidth and so we optimistically assume that there will be
no conflicts, so it takes 1 unit of time for the transmission.
Otherwise, we assume that the communications are evenly
spread on the available links, and that the duration of the phase
is determined by the maximum amount of communications
that share a link which is computed by this formula: T =

⌈
C
L

⌉
where C represents the maximum number of communications
requiring the utilization of the links in the given topology,
while L denotes the minimum number of links available of the
switches. In comparison, since we have no conflicts with our
solution, the time it takes to complete a full all-to-all exchange
is the result of the formula presented in III.

As mentioned, we consider the topology: SFT(2;16,32). In
the figure 3, we show that our solution has better performance
than the other three. We define the slowdown of a solution in

Fig. 3: Time performance with the topology SFT(2;16,32). The left axis
shows the slowdown of the different scheduling upon failures compared to
no failures, this is the relative time degradation due to failures. The speedup,
on the right axis, shows the improvement ratio of FAS compared the linear
shift. The failures happen on the leaf switches.

the presence of failures as the ratio between the time for the
all-to-all exchange completion with failures and the time to
completion with no failures, which is the ideal performance.
The time it takes for the all-to-all exchange completion is in
the order of milliseconds. However, the unit of time does not
matter for the slowdown since it is a ratio. Basically, for every
failure scenarios, we compute the slowdown with this simple
formula: Slowdown = T

S where T represents the time it takes
for the considered all-to-all schedule completion and S is the
number of servers which is the minimum length of an all-
to-all schedule without failures, as shown in II-A. We define
the speedup as the improvement ratio of our proposal, FAS,
compared to the linear shift. We choose the linear shift because
it has the best performance compared to BO and XOR. We
compute the speedup with this formula: Speedup = TLS

TFAS
.

The simulation involves eight failure scenarios, which are
represented on the x-axis in figure 3. It’s important to note
that when the number of failures is stated as 1, it does not
imply that there is only a single failure in the entire topology.
Instead, the result applies when there is one failure on one or
more leaf switches, and potentially on all of them. The x-axis
gives the maximum number of failures on every leaf switch.
The lower bound in section III-A remains the same even if
each node at layer l has F links failure with their parents at
layer l+1. In fact, not only the lower bound is the same, but
a schedule that tolerates reduction in capacity of L between
layer l and l + 1 also tolerates a reduction of capacity of
F ×Ml+1 between layer l + 1 and l + 2.

Our solution results in smaller slowdowns than the other
three for all scenarios considered. However, this difference
is less pronounced when more than half of the uplinks fail
on the same switch. As the number of link failure increases,
the amount of available paths decreases, so the possibilities
of packing communications in each phase decreases. More
importantly, the speedup of our solution compared to the linear

shift is roughly about 80% for a single failure while it drops to
almost 0% when we have half of the links that failed because
we do not have enough paths to optimize the routing.

V. RELATED WORK

Initially, the strategy proposed in paper [3] appeared promis-
ing due to its use of only half of the up links at each
phase, which suggested easier re-routing in case of failures.
However, further investigation revealed that this approach does
not effectively address the challenges associated with all-to-
all scheduling in the event of failures. In contrast, our solution
offers a fault-adaptive scheduling mechanism that guarantees
conflict-free paths even in the event of failures. By using an
integer linear programming model, our approach ensures that
a schedule with a feasible routing solution can be achieved,
provided the topology is connected.

VI. CONCLUSION AND FUTURE WORKS

The scheduling described in this paper is able to support
link failures in fat tree topology with an all-to-all exchange.
It performs better than state-of-the art linear-shift, bandwidth-
optimized and XOR scheduling, even with many failures in
the network. The next step is to find an appropriate routing
algorithm to support the scheduled communications for a data
acquisition network.

REFERENCES

[1] E. Zahavi, G. Johnson, D. J. Kerbyson and M. K. Lang, “Optimized In-
finiBand TM fat-tree routing for shift all-to-all communication patterns,”
in ISC, 2010.

[2] F. Pisani et al., “Design And Commissioning Of The First 32 Tbit/s
Event-Builder,” IEEE Trans. Nucl. Sci., pp. 1–1, 2023.

[3] B. Prisacari, G. Rodriguez, C. Minkenberg, and T. Hoefler, “Bandwidth-
Optimal All-to-All Exchanges in Fat Tree Networks,” in ACM ICS’13,
2013.

[4] G. Jereczek, G. Lehmann Miotto, and D. Malone, “Analogues between
tuning tcp for data acquisition and datacenter networks,” in 2015 IEEE
ICC, pp. 6062–6067, 2015.

[5] LHCb Collaboration, “LHCb Trigger and Online Upgrade Technical
Design Report,” tech. rep., CERN, Geneva, 2014.

[6] LHCb Collaboration, “LHCb Upgrade GPU High Level Trigger Tech-
nical Design Report,” tech. rep., CERN, Geneva, 2020.

[7] CERN, “Key Facts and Figures – CERN Data Centre.”
https://information-technology.web.cern.ch/sites/default/files/
CERNDataCentre KeyInformation July2019V1.pdf. Online; accessed
July 1, 2019.

[8] F. Pisani. personal communication.
[9] P. Gill, N. Jain and N. Nagappan, “Understanding network failures

in data centers: Measurement, analysis, and implications,” ACM SIG-
COMM’11, p. 350–361, Association for Computing Machinery, 2011.

[10] Leiserson et al., “The Network Architecture of the Connection Machine
CM-5 (Extended Abstract),” SPAA’92, p. 272–285, Association for
Computing Machinery, 1992.

[11] Gurobi experts, “Gurobi Optimization Inc. Gurobi optimizer reference
manual.” http://www.gurobi.com, 2023. Online; accessed 4 February.

[12] Timo Schneider, Torsten Hoefler and Andrew Lumsdaine, “ORCS: An
Oblivious Routing Congestion Simulator,” Tech. Rep. 675, Indiana
University, Feb. 2009.

