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Abstract

Data acquisition (DAQ) networks, widely used in scientific research and indus-
trial applications, are composed of numerous interconnected servers, exchanging
substantial data volumes produced by large scientific instruments. One traf-
fic matrix generally used in such networks is the all-to-all collective exchange,
which demands substantial network resources, making network failures partic-
ularly challenging to mitigate. If not mitigated, the effects of network failures
severely hamper the performance of the DAQ network, potentially leading to the
loss of valuable experimental data.
In the context of DAQ networks using a fat-tree topology, we propose FORS:
a scheduling and associated routing solution to support the all-to-all collective
exchange under network failures. FORS optimizes bandwidth utilization in the
face of any failure scenarios, ensuring robust performance compared to the exist-
ing approaches. We propose an algorithm to solve the scheduling. For the routing,
we design an algorithm for simple failure scenarios, along with a linear program-
ming model to address more complex failure scenarios. We validate our proposed
solution using a real-world DAQ network as a case study. Results demonstrate
significant performance degradation in existing approaches and FORS’ consistent
ability to achieve higher throughput across various failure scenarios.

Keywords: all-to-all, fat-tree networks, integer linear programming, optimal routing,
fault-tolerance, data acquisition
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1 Introduction

Typically composed of a diverse set of sensors, DAQ systems capture large amounts
of data. These systems find extensive use in various fields, including scientific research
such as aerospace [1–3], healthcare [4, 5] and physics [6–8]. For instance, DAQ systems
at the European Organization for Nuclear Research (CERN)[7, 8] process tens of
exabytes annually[9, 10], significantly contributing to advancements in the field of
physics research[11].

Data acquisition (DAQ) systems often rely on HPC applications for real-time
analysis and efficient processing of substantial volumes of data. Optimization of
HPC applications is the subject of much research, pushing back the limits of
components[12, 13], architecture[14–16] and networks[17]. A lack of optimization can
result in a significant loss of performance, preventing important scientific discoveries
from being made. While the optimization of collective exchanges in HPC applications
is extensively discussed and addressed [18–25], to the best of our knowledge, there has
been no proposals on optimizing these collective exchanges in the event of network fail-
ures, involving bandwidth reduction, despite the fact that failures are common [26]. As
we demonstrate in this paper, network performance is currently significantly impacted
when bandwidth reduction occurs. Addressing this issue is challenging as it involves
adapting these collective exchange scheduling and routing to the remaining network
bandwidth during failures.

Here, we focus on networks built to execute all-to-all exchanges all the time, such
as DAQ networks needed by high-energy physics experiments. The data exchanged is
produced in real-time by large scientific instruments. For instance, the Large Hadron
Collider (LHC) at CERN accelerates particles to energies of up to 6.8 TeV and makes
them collide to energies up to 13.6 TeV. Numerous sensors capture various aspects
of the resulting collisions, the events. The sensors are connected to servers to which
they send their data. Then, each server needs to exchange the data produced by
its sensors with the other servers in an all-to-all collective exchange, to reconstruct
the collisions. The all-to-all collective exchange demands significant network resources
and is highly sensitive to failures. Furthermore, since data is produced by sensors in
real-time, servers must reconstruct the events promptly. A delay in reconstruction
can overload server buffers with data, leading to congestion and the potential loss of
important data. Consequently, throughput is the focal network metric in this paper.

Collective operations, in general, are also increasingly used in machine learning[27–
30], including AllGather, AllReduce, or ReduceScatter [31]. However, they differ from
the all-to-all collective exchange. Our problem is specific to DAQ systems.

In this paper, we propose a Fault-adaptive Optimized Routing and Scheduling
(FORS) solution to maintain high all-to-all throughput despite the bottlenecks intro-
duced by network link failures. Our first contribution measures on the real DAQ the
reduced throughput in various failure scenarios (Section 3). Subsequently, we introduce
in Section 4 the first element of FORS, which is an algorithm to adapt the schedul-
ing of the communications for the all-to-all collective exchange in case of link failures.
Additionally, FORS is composed of a semi-algorithmic routing solution, presented in
Section 5, combining a route computation algorithm for basic failure scenarios with
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an Integer Linear Programming (ILP) model designed to address more specific com-
bination of failures. The purpose of these two algorithms is to provide congestion-free
paths between servers within the network based on the given failure scenario. We
demonstrate in Section 6 the applicability and performance of our solution on a real,
operational DAQ network at CERN employing HPC for processing large volumes of
scientific data. We compare our proposal with currently deployed approaches. The
structure and operation of this network, detailed in Section 2, relies on a fat-tree
topology with all-to-all exchange.

2 Background

In this section, we introduce the fat-tree topology and all-to-all collective exchange
common to DAQ networks. Subsequently, we focus on our case of study and describe
its specifics and existing routing algorithms.

2.1 The Fat-tree topology

Our solution currently focuses on a single topology family: Generalized Fat-trees, more
specifically k-ary-L-trees [32]. Figure 2 pictures an example of such a topology. Fat-
tree topologies are widely used in HPC. Many of the systems on the latest Top500
list employ a fat-tree topology [33]. Generalized fat-tree topologies are particularly
well-suited for the all-to-all collective exchange, thanks to their scalability and rear-
rangeable non-blocking nature[34]. This last characteristic allows each end node to
communicate at the same time, making the best use of the available bandwidth [35].

The all-to-all collective exchange has been extensively studied and applied in var-
ious widely-used topologies within HPC, such as the mesh [36] and torus [37] [38]
topologies. These topologies are still used and in place, but the most popular ones are
currently Dragonfly [39] and Fat-tree for their scalability.

Dragonfly [19] and Dragonfly+ [40, 41] topologies are suitable for many HPC
workloads, but not the best for the all-to-all collective exchange. Dragonfly lever-
ages the locality of data exchanges observed in some HPC applications, but not in
all-to-all. They are blocking topologies except intra-group, which makes them less suit-
able for all-to-all exchanges. Furthermore, the completion time of all-to-all exchanges
with dragonfly topologies is increased compared to running the application on fat-tree
topologies.

2.2 The all-to-all collective exchange

The all-to-all collective exchange is a communication pattern in which each process
(or server) sends data to every other process and receives data from every other pro-
cess in the group. This communication pattern finds common application in parallel or
distributed computing environments and is standardized in Message Passing Interface
(MPI) [42]. This data exchange plays a crucial role in various scientific applications,
such as the Fast Fourier Transform (FFT) algorithm [38, 43, 44], which finds applica-
tion in diverse scientific fields, including healthcare with medical image reconstruction
in Magnetic Resonance Imaging (MRI) [45]. Moreover, the all-to-all exchange is widely
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Fig. 1: The Linear-shift scheduling with 4 processes. Each process communicates with
all other processes. To prevent congestion, the exchange is divided into 4 phases. In
each phase, each process sends data to another process and receives data from another
one. The minimum number of phases for the all-to-all exchange is the same as the
number of processes.

used in Grid-based Simulations, employed in the prediction of weather patterns [46]
or in Hadoop-like applications [47].

Simultaneous all-to-all data transfer can cause network congestion. In a network
connecting a group of servers denoted as S, each hosting a single process, each server
must send and receive data to and from every other server. A full-mesh topology,
where each server has a direct link to all others, avoids congestion but is a waste of
resources as it requires a bandwidth of |S|2 when |S| bandwidth units are sufficient
at the servers. To reach this lower bandwidth, a commonly employed strategy is to
divide the time into synchronized phases. Each server communicates with exactly one
server in each phase. After all phases, every server has exchanged data with all others,
needing only |S| bandwidth units per phase.

To complete an all-to-all exchange with synchronized phases, communications are
scheduled using an algorithm that computes the unique destination for each source and
phase. An example of such an algorithm is the Linear-shift pattern [22] illustrated
in Figure 1, where each destination process is given by d = (s + p) mod S, where s
refers to the source process, p is the phase and S is the total number of processes.
Many other scheduling algorithms [24] exist, such as XOR or Bandwidth-optimal [18].
As network links are used at full capacity by communication flows, combining these
algorithms with optimal routing helps avoid congestion in the network and ensure that
no communication flows share links.

A persistent issue remains: in the event of network failures, existing scheduling
algorithms do not take into account the loss of bandwidth. In such scenarios, multiple
communication flows end up sharing links on the network, resulting in congestion and
decreased throughput, as we show in Section 3. One of our contributions is a novel
scheduling algorithm, described in Section 4, which considers bandwidth reduction
and offers a conflict-free scheduling for all failure scenarios.
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Fig. 2: The fat-tree topology of the studied DAQ Network. The notation of the fat-
tree topology is FT(L = 2;M0 = 20,M1 = 18), where L defines the number of layers,
M0 is the number of spine switches and M1 is the number of leaf switches. The number
of servers is M0 ∗M1 = 360.

2.3 Case of study: A DAQ network

The application of the all-to-all collective exchange with a fat-tree topology is used
in various systems [46], including data acquisition (DAQ) in particle physics experi-
ments [48–50] at the European Council for Nuclear Research (CERN). Our case study
is the DAQ network of the LHCb experiment at CERN depicted in Figure 2.

The Large Hadron Collider (LHC) at CERN stands as the world’s largest and
most powerful particle accelerator. Within this accelerator, two particle beams are
accelerated to nearly the speed of light before colliding. The resulting physical phe-
nomena from these collisions are studied by physicists, significantly advancing the
field of physics research [51]. Throughout the remainder of this paper, a physical
phenomenon is referred to as an event. After over three years of upgrades and main-
tenance, the LHC currently achieves a record energy level of 13.6 TeV. To address
such high energy levels, the DAQ system of the LHCb experiment has also experi-
enced major upgrades. The DAQ network can now achieve a throughput of up to 46
Tbps, surpassing the design target of 32 Tb/s[52]. Such performance makes the stud-
ied network the one with the highest real-time data bandwidth compared to other
experiments at CERN [53, 54].

Instruments responsible for measuring the properties of these events are known as
detectors, typically composed of multiple sensors. The data produced by the sensors
represent an image of events resulting from collisions between the beams at a given
time. One of the objectives of a DAQ system is to reconstruct a comprehensive view
of each event generated in the LHC. This process is called Event Building and
is generally performed over a high-throughput network of servers. The sensors are
directly connected to the servers and send data to them. The servers then perform
an all-to-all collective exchange to reconstruct the events generated in the LHC. The
scheduling pattern of the communication between servers in our studied network is
computed using the Linear-shift[22] algorithm introduced in Section 2.2.

The studied DAQ network relies on the Infiniband technology. Infiniband is widely
used in HPC[33]. The fat-tree topology of the studied DAQ network, illustrated in
Figure 2, is composed of 28 40-ports Infiniband High Data Rate (HDR) switches.
Throughout this paper, the switches located at the top layer of the fat-tree topology
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are referred to as spine switches while those at the bottom layer are denoted as
leaf switches. The studied fat-tree topology includes 18 leaf switches and 20 spine
switches. Each leaf switch is connected to every spine with a 200 Gbps optical fiber.
Leaves are also directly connected to at most 20 servers with 20 copper cables with
the same capacity of 200 Gbps. The network enables the connection of a total of
360 servers. However, the effective number of servers utilized in the network is 326.
The total throughput that can theoretically be achieved by the DAQ application is
326 ∗ 200 = 65200 Gbps = 65.2 Tbps. Nevertheless, due to various overheads, our
experiments show in Section 6 that the actual total throughput achieved by the DAQ
application is approximately 46 Tbps. This represents a utilization of about 70% of
the available bandwidth in the network.

Every Infiniband network relies on a controller, called OpenSM [55]. The controller
is responsible for computing routes and pushing them into the Linear-Forwarding
Tables (LFT) of the switches [55]. To efficiently route each communication flow, a
routing algorithm compatible with the linear-shift [22] scheduling is used to avoid
congestion in the topology. Ensuring high throughput requires selecting the shortest
paths for each communication flow. In our studied network, every inter-leaf flow must
traverse the topology from the leaf switches to the spine switches and then back to the
leaf switches, this path being the shortest in the topology of the DAQ network. Hence,
the challenge lies in choosing a spine for each communication flow. To prevent two
flows from using the same link simultaneously, each leaf must employ a distinct spine
for each communication flow. A routing algorithm with those characteristics is pro-
vided by Infiniband. This routing algorithm, named Ftree [55], uniformly distributes
the traffic on the links between spine and leaf switches according to the destination
server. Consequently, the linear-shift algorithm combined with the Ftree routing algo-
rithm ensures that there is no congestion in the network when there are no network
failures [22].

In the event of link failures, the use of the Ftree routing is not recommended as
the topology is no longer a pure fat-tree. In such scenarios, the default behavior of
OpenSM is to switch from Ftree to Min-Hop, upon the detection of failures. Similar
to Ftree, Min-Hop computes the shortest path for each communication flow and uni-
formly distributes the traffic. Contrary to Ftree, Min-hop is applicable on non fat-tree
topologies. In the presence of a link failure, there may not be sufficient links available
to allocate traffic without congestion. Consequently, the same spine might need to be
used simultaneously by multiple communication flows from and to a leaf switch. Min-
Hop prioritizes the spine with the least communication flows to balance the traffic
uniformly [55].

In the next section, we show the performance of the studied DAQ application with
the routing and scheduling algorithms currently in use, alongside viable alternatives.
To motivate our problem, we demonstrate how performance degrades significantly in
case of failures.
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3 Motivation

The objective of this section is to demonstrate the insufficient performance of the com-
bined linear shift scheduling and Infiniband routing algorithms in the event of network
failures. Network failures are common in data centers [26]. In [56], the authors show
a comprehensive study of network failures in data centers which presents statistical
findings based on a year-long measurement of failures in a real data center network.
Despite the generally reliable nature of data center networks, failures occurred on a
daily basis during the measurement period. Additionally, the study reveals that some
link failures can last for an extended period due to repair difficulties, either because
of a lack of spare network equipment or the physical access of the link being less
reachable.

Furthermore, there is a time correlation between failures in large-scale distributed
systems. In [57], the authors highlight the existence of peak periods during which
failures are most pronounced.

The literature shows that failures in large-scale networks are frequent, time-
correlated, and can last a long time. In this section, we evaluate the consequences
of failures with various Infiniband routing algorithms for all-to-all scheduling with
synchronization. In our production DAQ, which is not capturing usable physics data
during the LHC warmup phase, we demonstrate that even a few network failures result
in a significant loss of throughput. Such failures in the LHC full operation phase would
lead to a significant loss of valuable data.

3.1 Experiments setup

To illustrate the performance degradation during bandwidth reduction, We count the
number of events reconstructed by each server over 5-second intervals in the all-to-all
application. The duration of the measurement is one minute for each failure scenario,
resulting in a total of 12 data points. Multiplying this rate by the volume of data of
an event, we obtain the global throughput of the DAQ network.

We perform our measurements under various failure scenarios, involving links
between leaf and spine switches. The links between the leaf switches and the servers
are not considered, since failures on those links disconnect servers and, hence sources,
from the network. In such cases, optimizing the bandwidth is not meaningful as we
cannot reconstruct events anyway. To conduct our measurements, we manually dis-
able links between leaf and spine switches. In the following description of the failures,
the IDs of the switches are referenced according to Figure 2:

• 0F: No failures.
• xF SW0: x ∈ [1, 2, 3] failure(s) between the leaf switch SW0 and random spine

switches. This scenario allows to show the impact of bandwidth reduction located
on a single leaf switch.

• xF SW0,5,11: x ∈ [1, 2, 3] failure(s) between the leaf switches SW0, SW5 and SW11

and consecutive spine switches. All cited leaf switches have failures with a different
spine. For instance, 1F SW0,5,11 corresponds to the link failures SW0-SW18, SW5-
SW19 and SW11-SW20. This scenario illustrates the impact of multiple link failures
occurring in more diverse locations inside the network.
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• SW18,19: The spine switches SW18 and SW19 have failed. This scenario shows the
impact of spine failures.

• SW18,19,22,23: The spine switches SW18, SW19, SW22 and SW23 have failed.

We consider a large variety of realistic[57, 58] failure scenarios. The literature [26]
shows that grouped failures rarely consist of more than five failures simultaneously.
Our failure scenarios range from 1 failure (XF SW0) to 9 failures (3F SW0,5,11)
occurring simultaneously. Additionally, we evaluate the performance of the different
approaches with spine failures, ranging from 40 to 80 link failures in the network. While
these latter failure scenarios are rather extreme our results show that the performance
degradation is identical to some more frequent lighter failure cases.

As explained in Section 2.2, to prevent congestion, the all-to-all collective exchange
is segmented into phases. The DAQ application running on the servers ensures that
all sources finish sending their data to the current destinations before moving to
the next phase. The synchronization is performed using the Tree-based Barrier algo-
rithm [59]. This approach has demonstrated better performance than unsynchronized
communications without failures, especially in large-scale systems [52].

The routing algorithm used in the absence of failures is Ftree, as explained in
Section 2, which is the optimal routing algorithm for the linear-shift scheduling [22].
The routing algorithm Ftree is employed in scenario 0F when no bandwidth reduction
occurred. It is also used in the scenarios SW18,19 and SW18,19,22,23, denoting the failure
of the spine switches SW18, SW19, SW22 and SW23. Despite the complete failure of
those switches, the Infiniband controller does not fail over to Min-Hop as the topology
stays a fat-tree in such cases. In the other failure scenarios, the controller switches to
the Min-Hop routing algorithm, which is the default behavior in the absence of a fat-
tree, and which is recommended as it balances the traffic better than Ftree in case of
bandwidth reduction [60]. Other OpenSM routing algorithms exist, such as Up-Down,
LAyered SHortest Path Routing (LASH), and Dimension Order Routing (DOR), but
they are not suitable for fat-tree topologies [55]. [61] studies the performance of these
algorithms and shows that they are all highly sensitive to network failures.

Here we evaluate the performance of Infiniband routing algorithms optimized
for fat-tree topologies (Ftree and Min-Hop), in both normal operation and during
bandwidth reduction, on a real Infiniband network. Additionally, we incorporate the
adaptive routing version of Ftree (Ftree-AR) into our measurements. This adaptive
routing version of Ftree is already implemented in Infiniband [55] but is not normally
used by the DAQ network under study. This approach dynamically adjusts routing in
the event of failures by setting multiple alternative routes in the routing tables and
balancing the traffic on the paths depending on the load.

3.2 Measured throughput

In the synchronized all-to-all exchange, link failures affect all servers.
Link failures reduce the usable bandwidth for all servers. Our results show the same
throughput with two failures on a single leaf switch (2FSW0) and with the loss of two
spines (SW18,19). In the first case, we loose two paths for the servers below the leaf
switch. In the latter, all leaf switches loose two paths for their servers. Because the
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Fig. 3: The average throughput achieved per server according to the failure scenario
with the default routing algorithms Ftree/Min-Hop and the adaptive routing version
of Ftree. To obtain the total throughput achieved by the DAQ application, one can
multiply this value by the number of servers in the DAQ application, which is 326.
The error bars represent the minimum, median and maximum values. The topology
of the data acquisition network is illustrated in Figure 2. Failure scenarios with the
’*’ symbol correspond to a bandwidth reduction of 1, those with the ’+’ symbol to a
reduction of 2 and ’-’ corresponds to a reduction of 3.

exchange is synchronized, the servers need to wait on each other. As a result, the com-
munications for all leaves are slowed down similarly in both cases. We have a uniform
bandwidth reduction for all servers. Likewise the loss of two links on one leaf switch
and the loss of two links on all leaf switches lead to the same bandwidth reduction.
Furthermore, the throughput with the failure of two spine switches (scenario SW18,19

in Figure 3), being the failure of 40 links, is better than the throughput with three
failures on a single leaf switch (scenario 3F SW0 in Figure 3). Losing two spines results
in a bandwidth reduction of 2 paths per leaf switch, as all leaf switches lose 2 links,
while the loss of three links on a single leaf switch results in a bandwidth reduction
of 3 paths for all leaf switches. Therefore, the latter scenario degrades the throughput
more than the loss of two spines as the exchange is synchronized.

The location of failures has an influence on the throughput in the syn-
chronized all-to-all exchange. It is interesting to note that scenarios where failures
are not located on the same spine switch exhibit lower throughput. Again, this is
because more paths become unavailable between the leaves. For instance, scenario
SW18,19, representing the failure of the spines SW18 and SW19, which is the loss of
40 links, demonstrates higher throughput than scenario 3F SW0,5,11, where three leaf
switches experience three link failures with different spines, which is the loss of 9
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links. This behavior becomes more pronounced as the number of failures increases. In
contrary, the bandwidth reduction for synchronized exchange is expected to be uni-
form across all servers, explaining why scenario 2F SW0 and SW18,19 have the same
throughput, while 2F SW0 is the loss of 2 links and SW18,19 is the loss of 40 links (as
explained in the previous paragraph).

Coming back to scenarios 3F SW0,5,11 and SW18,19, the difference in throughput
arises from the fact that in the scenarios 3F SW0,5,11, the number of paths between the
leaf switches impacted by failures is higher compared to scenario SW18,19. In the former
scenario, SW0 experiences one link failure with SW18,19,20, SW5 with SW21,22,23 and
SW11 with SW24,25,26, which makes the number of possible paths between SW0, SW5

and SW11 reduced to 11, as there are only 11 spines where the leaves SW0,5,11 are
all connected. This results in a bandwidth reduction of 9, as there are 20 spines in
the topology. Consequently, the scenario 3F SW0,5,11 further reduces the bandwidth
between the leaf switches impacted by failures, resulting in increased congestion and
decreased throughput compared to the loss of 2 spine switches. Appendix B provides
more details on the complexity of this failure scenario.

The performance of Ftree adaptive routing is reduced or equivalent
compared to the performance of Min-Hop and Ftree. The use of adaptive
routing demonstrates performance equivalent or inferior to the Ftree and Min-Hop
routing solutions. Note that Ftree-AR behaves exactly the same as Ftree without any
failures. The throughput of Ftree and Min-Hop is equivalent to Ftree adaptive rout-
ing with synchronized all-to-all, except in the scenarios 3F SW0 and 3F SW0,5,11, in
which the throughput is lower. This is attributed to the fact that the traffic generated
by the DAQ application is too bursty, as datacenter traffic in general [62] [63] [47],
for the Ftree adaptive routing algorithm to adapt accordingly. Beyond our measure-
ments, another source has indicated that adaptive routing leads to more performance
degradation for bursty traffic compared to deterministic routing [64].

In all approaches, it becomes evident that even a few failures on a network compris-
ing 360 links lead to a notable degradation in the performance of the DAQ network.
As described in Section 2, the current application employs synchronized all-to-all
exchange with the Ftree routing algorithm under normal conditions, while switching
to Min-Hop routing in the event of failures. As illustrated in Figure 3, the throughput
per server decreases from 141 Gbps to 87 Gbps with a single link failure. Multiplying
these values by the number of servers, 326, connected in the DAQ network, we obtain
the total network throughput. Consequently, the total throughput of the DAQ net-
work decreases from 45.9 Tbps to 28.3 Tbps with a single link failure. This provides
evidence that the current scheduling and routing (Ftree to Min-Hop and the adap-
tive routing version of Ftree) combinations are not sufficient. Finding a more adaptive
scheduling and routing solution in the event of bandwidth reduction is crucial.

4 Fault-adaptive scheduling algorithm

In this section, we present our new scheduling algorithm performing a congestion-
free all-to-all exchange in an arbitrary 2-layers fat-tree. The challenge is using the
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Fig. 4: Illustration of function T (s, p), with M0 = 6 and f = 2, that defines whether a
server s transmits at phase p or not. The function depends only on αs and is periodic
of period M0 for the second variable. Server s transmits at phase p if and only if the
corresponding cell is crossed.

minimum number of phases for any combination of link failures. Our algorithm only
applies to the all-to-all traffic matrix.

We consider here a fat-tree where the root node (representing the set of spines
in the generalized fat-tree topology) has M1 children representing the leaf switches,
and each leaf switch has M0 children representing the servers. There are P = M0M1

servers in total. Assuming the bandwidth between a server and its parent leaf switch
is normalized to 1, the available bandwidth between a leaf switch and the root is M0.
Such a fat-tree is denoted FT (2;M0,M1). There is a one to one mapping between
the resources in this topology and the k-ary-L-tree deployed in practice. This new
representation is used to simplify the upcoming notations.

Let f be the reduction of the bandwidth between each leaf switch and the root
of the tree. In a generalized fat-tree, the root is replaced by M0 spine switches, each
connected to all the leaf switch links having equal bandwidth [34]. In this case, f is
the maximum number of failed links on a leaf switch. The bandwidth reduction f is
computed by taking the number of failures on all the leaf switches and finding the
maximum of these numbers. It is known [18] that, if M0 ≥M1, then a schedule exists
with a bandwidth usage between a leaf switch and the root of at most M0−⌊M0

M1
⌋. So

if f ≤ ⌊M0

M1
⌋, the optimal schedule described in [18] works without being impacted by

faults.
Now we present a schedule that performs an all-to-all (congestion-free) schedule for

any ⌊M0

M1
⌋ < f < M0. The number of phases of our schedule is Pf =

⌈
M0(P−M0)

M0−f

⌉
> P ,

which is optimal [65].
The index of a server s ∈ [0,M0M1] is uniquely decomposed as

s = αs + γsM0
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where γs ∈ [0,M1 − 1] is the index of the parent leaf switch and αs ∈ [0,M0 − 1] is
the index of the server among the servers below the leaf switch.

We want each server to transmit P −M0 times evenly during the Pf phases of an
execution. These are the number of communications that need to leave the leaf switch,
for each source server. To do so, we define for each server s the set of phases Θs when
it transmits. The definition of Θs is based on a common infinite sequence Θ̃ of evenly
distributed integers with a density of M0/(M0 − f):

Θ̃(i) =

⌈
iM0

M0 − f

⌉
where i is the index in the sequence.

We assign a shifted subset of the image of Θ̃ of size P −M0 to each server s as
follows:

Θs =
{

Θ̃(i + θs)− αs s.t. i ∈ [0, P −M0 − 1]
}

with θs =
⌊
(αs−1)(M0−f)

M0

⌋
+1. Θs contains P−M0 integers from the sequence Θ̃, shifted

by αs, and starting at index θs (in order ensure that the first phase is non-negative).
Let T be the transmission function defined on pairs (s, p) where s ∈ [0, P − 1] is a

server and p ∈ [0, Pf − 1] a phase, such that T (s, p) equals 1 if s transmits in phase p
and 0 otherwise. In our schedule, we define T as follows:

T (s, p) =

{
1 if p ∈ Θs

0 otherwise

We see that T is periodic with period M0 and depends only on αs and p. Figure 4
presents an example of a function T in a fat-tree FT (2; 6, 6) with f = 2 failures.

Let NT (s, p) be the number of times s transmits before phase p (ie.,
∑p−1

q=0 T (s, q)).
We can now define our schedule d. For a given server s in a phase p, if the server

transmits at this phase, ie., if T (s, p) = 1, then the destination server is computed
using the number NT (s, p) + θs. This number is used to compute the destination leaf
Dleaf (among the M1−1 possible destination leaves) and the index of the destination
server below this leaf Dserver (among the M0 possible servers). The destination index
DleafM0 +Dserver, which depends only on αs, is then shifted to start from the index
(γs+1)M0 of the first server below the next leaf. In addition, one could observe that the
sequence of destinations is periodic with period the lowest common multiple between
M1 − 1 and M0 (denoted lcm(M1 − 1,M0), so if the M1 − 1 and M0 are not coprime,
we must shift the sequence every lcm(M1 − 1,M0) phase. Formally, we have:{

Dserver = (NT (s, p) + θs) %M0

Dleaf =
(
NT (s, p) + θs +

⌊
NT (s,p)

lcm(M1−1,M0)

⌋)
%(M1 − 1)

d(s, p) = (DleafM0 + Dserver + (γs + 1)M0) %P

The scheduling algorithm is described in Algorithm 1. The scheduling solution can
be found in polynomial time. The complexity of the scheduling algorithm depends on
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the number of phases and the number of servers, and is given by O(Pf ∗ P ), where

Pf =
⌈
M0(P−M0)

M0−f

⌉
> P is the number of phases with f reduction of the bandwidth

and P = M0M1 the number of servers.

5 Fault-adaptive routing solution

In order to recover from failures, a better communication pattern is not enough, it is
also necessary to ensure that the right paths are taken. Here we propose a congestion
free routing solution to map the traffic resulting from the schedule. We first propose
an algorithm that addresses link failures verifying a specific property. We then propose
an ILP model to deal with all the failures not supported by Algorithm 2 in the next
section.

5.1 Routing algorithm

The objective of our routing algorithm is to efficiently assign a unique spine to each
source-destination pair during each phase. Indeed, selecting a spine dictates the whole
path between a source and destination. For this purpose we go back to the original
Generalized Fat-tree, more specifically the k-ary-L-tree [32]. To prevent multiple com-
munication flows from utilizing the same link in the topology, the algorithm must
guarantee that a spine is not used more than once for destinations connected to the
same leaf switch as well as for sources below a leaf.

Fig. 5: Illustration of a failure scenario on a two-layer fat-tree topology involving an
unequal number of paths between different leaf switches. The links 0-8 and 1-9 are
broken, resulting in switch 0 having only 2 paths available to switch 1 and 3 paths
available to the rest of the leaf switches.

We propose Algorithm 2 to compute a unique spine to each source-destination pair
during each phase, ensuring that a spine is not used more than once for destinations or
sources connected to the same leaf. The principle of Algorithm 2 is simply to exclude
spines that contain at least one failure from being used as paths for source-destination
pairs. This property makes Algorithm 2 only applicable when the number of spines
impacted by failures m is inferior or equal to the bandwidth reduction f (m ≤ f). For
instance, in Figure 5 which represents a two-layer fat-tree, the bandwidth reduction
f is 1, as the maximum number of link failures on leaf switches is 1. The number of
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Algorithm 1 The scheduling algorithm computes the destination for each source
at each phase. Here, M1 is the number leaf switches, M0 is the number of servers
connected to a leaf switch and f is the bandwidth reduction. The output is scheduling
which denotes the computed scheduling that gives the ordered list of source-destination
pairs for each phase.

1: procedure compute scheduling(M0,M1, f)
2: P ←M0 ∗M1 ▷ Number of servers.

3: nbPhase←
⌈
(P−M0)∗M0

M0−f

⌉
▷ Number of phases.

4: Θ̃← [] ▷ Computation of the sequence Θ̃ of evenly distributed integers.
5: for each i ∈ [0..P ] do

6: Θ̃[i]←
⌈

iM0

M0−f

⌉
7: end for
8: θ ← [] ▷ Computation of the starting index from the sequence Θ̃ for each

server.
9: for each αs ∈ [0..M0] do

10: θ[αs]←
⌊
(αs−1)(M0−f)

M0

⌋
+ 1

11: end for
12: Θ← []; ▷ Computation for each server of the set of phases Θ when it transmits.
13: for each αs ∈ [0..M0] do
14: Θ[αs]← []
15: for each i ∈ [0..P −M0] do
16: Θ[alphas][i]← Θ̃[i + θ[αs]]− αs

17: end for
18: end for
19: cycleLength← lcm(M1 − 1,M0) ▷ Number of

transmission before returning to the same destination. The lcm function returns
the least common multiple between M1 − 1 and M0.

20: NT ← [0] ∗ P ▷ Number of times NT [s] a server s has transmitted data.
21: scheduling ← [] ▷ Computation of the ouput scheduling.
22: for each p ∈ [0..nbPhase] do
23: scheduling[p]← []
24: for each sourceLeaf ∈ [0..M1] do
25: sourceLeafOffset← sourceLeaf ∗M0

26: for each sourceOffset ∈ [0..M0] do
27: s← sourceLeafOffset + sourceOffset
28: if p ∈ Θ[sourceOffset] then
29: if NT [s] ≥ P −M0 then ▷ The server has finished transmitting.
30: continue
31: end if
32: n← NT [s] + θ[sourceOffset]

33: cycleOffset←
⌊

NT (s,p)
cycleLength

⌋
34: groupDest← n mod (M1 − 1)
35: offsetDest← (n + cycleOffset) mod M0

36: shift← groupDest ∗M0 + offsetDest
37: NT [s]← NT [s] + 1
38: d← (sourceLeafOffset + M0 + shift) mod P
39: scheduling[p].insert((s, d))
40: end if
41: end for
42: end for
43: end for
44: end procedure
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spines impacted by failures m is 2, as spines 8 and 9 each have one link failure with 0
and 1, respectively. As m > f , Algorithm 2 is not applicable in this scenario. However,
if there is only one failure, involving switches 0 and 8 for example, the algorithm
is applicable since the bandwidth reduction remains one and the number of spines
impacted by failures is now one m == f as well.

The spine to use on a path is chosen based on the index of the source-destination
pair in the scheduling defined in Section 4. The selected spine is identified by the index
i in Algorithm 2.

Consider a generalized fat-tree with n = M0 spines and consider the array of n
spines denoted N = (N0, . . . , Nn−1). Let p ∈ P be a phase, P be the ordered list of
phases and Dp

l = (dl0, d
l
1, . . . , d

l
k−1) be the ordered list of k servers (in increasing order)

connected to leaf l that are destinations at phase p. The ordered list of m ≤ n spines
not impacted by failures is denoted S ∈ N . A spine is impacted by failures if at least
one of its connected links fails. The ordered list of source-destination pairs of servers
that communicate at phase p ∈ P is defined by Schedulep with p being the phase.

In the routing algorithm, each source-destination pair of servers denoted (s, d) ∈
Schedulep with p ∈ P , the spine used as a path to route the communication (s, d)
is noted Si mod m ∈ S with i mod m being the index of (s, d) in the ordered list
Schedulep. For example, Schedulep provides a set of source-destination pair SD =
((s0, d0), . . . , (sm, dm)), m being the number of spines not impacted by failures and
also the number of communications from and to a leaf switch at a phase p ∈ P . The
spines S0, . . . , Sm are respectively assigned as a path to the communications in SD,
which means that S0 is used as a path for the communication (s0, d0), S1 is assigned
to (s1, d1), etc.

Therefore, by definition, the source servers connected to a same leaf switch never
use a same spine as the list is ordered (the source servers with the lowest ID are the
first in the list) and the number of source server that communicates is equal to m.
This ensures that there is no congestion between a source leaf and a spine. There is
also no congestion between a spine and a destination leaf as the destinations in the
scheduling algorithm defined in Section 4 are shifted.

The routing algorithm is described in Algorithm 2. The solution computed by the
routing algorithm can be found in polynomial time. The complexity of the routing
algorithm is the same as the complexity of the scheduling algorithm. The complexity

is defined by O(Pf ∗ P ), where Pf =
⌈
M0(P−M0)

M0−f

⌉
> P is the number of phases with

f reduction of the bandwidth and P = M0M1 is the number of servers.
However, in the case of other failure scenarios, in particular, if m spines are

impacted by failures, with m ≤ f , as illustrated in Figure 5, the routing problem
becomes challenging. In order to be able to propose a general solution capable of
addressing all failure scenarios without encountering congestion issues, our proposal
is to use Integer Linear Programming (ILP).

5.2 Integer Linear programming model

In addressing specific failure scenarios, where the number of spines impacted by fail-
ures is strictly superior to the bandwidth reduction f , the formulation of a general
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Algorithm 2 Routing algorithm to compute the spine for each source-destination pair
(s, d) when m spines are impacted by failures and m ≤ f , with f being the bandwidth
reduction. Here, M1 is the number leaf switches, M0 is the number of servers connected
to a leaf switch and S is the ordered list of spine switches that do not contain any
failed links. Schedule is the scheduling computed by Algorithm 1 that provides the
ordered list of source-destination pairs for each phase. The output is the dictionary
routingTable which defines the computed spine for each source-destination pair (s, d).

1: procedure compute routing(M0,M1, f, S, Schedule)
2: P ←M0 ∗M1 ▷ Number of servers.

3: nbPhase←
⌈
(P−M0)∗M0

M0−f

⌉
▷ Number of phases.

4: routingTable← {}
5: for each p ∈ nbPhase do
6: i← 0
7: for each (s, d) ∈ Schedulep do
8: sourceSwitch← ⌊ s

M0
⌋

9: destinationSwitch← ⌊ d
M0
⌋ ▷ If the communication (s, d) is not local

to a leaf switch.
10: if sourceSwitch ̸= destinationSwitch then
11: routingTable[(s, d)]← S[i]
12: i← (i + 1) mod |S|
13: end if
14: end for
15: end for
16: end procedure

routing algorithm appears, to our best understanding, unattainable. In response, our
approach is to use Integer Linear Programming (ILP) to find a feasible routing solu-
tion, i.e. without conflicts on the links in the network. While using an ILP model to
find optimal routing for a specific traffic matrix is not new and has been employed in
the past, existing approaches [66, 67] solve scheduling and routing in a single model.
This significantly increases the complexity of the problem and makes its applicability
to large topologies challenging. In our approach, scheduling is solved by an algorithm
in polynomial time, simplifying the routing problem. This significantly reduces the
complexity of the ILP model for routing, making it applicable to large topologies.

We use Gurobi [68] to solve our Integer Linear Programming (ILP) model. Our
choice is guided by the improved performance of Gurobi compared to other widely
used solvers like IBM CPLEX and lpSolve [69]. An ILP model comprises variables,
constraints, and an optimization function. However, in order to find a solution faster,
and given that an optimization function is unnecessary as we seek only a feasible
routing solution, we deliberately omitted such a function from our model and set the
Gurobi parameters to stop after finding the first feasible solution. The notation to
define the variables and constraints of the ILP model are described in Table A1.
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Table 1: Notations in the ILP model.

Notation Description
s The source server.
d The destination server.
S The set of servers in the topology.
sp The spine.
SP The set of spines in the topology.
l The leaf switch.
L The set of leaf switches in the topology
Sl The group of servers directly connected to the leaf switch l.

5.2.1 The variables

The variables determine which spine is used for each source-destination pair. They are
defined as follow:

v(s, d, sp): Binary variable where s ∈ S is the source server, d ∈ S is the destination
server and sp ∈ SP is the spine. There is a spine variable for each possible spine that
can be used as a path for each source-destination pair. For example, if during a phase,
the source server 0 uses the spine 8 to join the destination server 10, the variable
v(0, 10, 8) is equal to 1 in the ILP model; ∀sp ̸= 8, v(0, 10, sp) = 0.

5.2.2 The constraints

We express the following constraints in the ILP model to ensure that the routing
solution is conflict-free:

• Only one spine is chosen per communication:
∀s, d ∈ S,

∑
sp∈SP v(s, d, sp) = 1.

• At most one spine is used from each source leaf switch to avoid upstream congestion:
∀l ∈ L, sp ∈ SP,

∑
s∈Sl,d∈S v(s, d, sp) ≤ 1.

• At most one spine is used to each destination leaf switch to avoid downstream
congestion:
∀l ∈ L, sp ∈ SP,

∑
s∈S,d∈Sl

v(s, d, sp) ≤ 1.

One ILP model is run for each phase. The variables and constraints enable to
find a feasible routing solution without conflicts on the network links for each phase
independently.

6 Evaluation of performance

In this section, we evaluate the throughput achieved by FORS, our combined schedul-
ing and routing solutions, on the use-case operational network with the settings
described in Section 3.1. We compare FORS with state of the art solutions to prove
that FORS degrades more gracefully in the event of bandwidth reduction than the
other solutions. Furthermore, we illustrate the correlation between the increase in the
number of phases and the achieved throughput, under various failure scenarios. Finally,
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we present the computation time required to find a routing solution in complex failure
scenarios, necessitating solving our ILP model.

6.1 Comparison of the achieved throughput

To evaluate our solution, we measure the throughput achieved by the servers under
the various failure scenarios described in Section 3.1. The measurement methodology
is exactly the same as described in Section 3.1. The InfiniBand controller assigns Local
Identifiers (LIDs) to each server in the topology. In the switch routing tables, each
LID is mapped to an output port, directing traffic accordingly. Our custom scheduling
described in Section 4 is implemented in the MPI application deployed in the network.
In instances of bandwidth reduction, FORS establishes a routing solution comprising
multiple paths for each source-destination pair. The determination of the specific path
for each pair depends on the phase in which the exchange occurs. Infiniband supports
multipath [55], enabling the addition of multiple routes to the switch routing table
for each destination server. Since the topology contains 20 spines, we need at least
20 routes for each LID in the routing tables of the switches. This means a switch
needs both the LID of the server and the spine encoded in the LID to determine the
appropriate output port. Thus, each switch has 20 LIDs to join each server, with every
spine in the network having an assigned ID encoded within the LID. The parameter
to set up multiple paths to join a destination server in InfiniBand is the LID Mask
Control (LMC) [55]. The LMC value needed to implement the routing solution is
5, allowing at most 25 = 32 routes for each destination server. We generate routing
tables for each switch, where each LID is assigned to an output port. The InfiniBand
controller then pushes the routing tables to the switches. Therefore, FORS scheduling,
described in Section 4, assigns the LID to use for each communication at each phase,
thus defining the complete route for sending traffic. This scheduling is implemented
in the MPI application deployed in the network.

As shown in Figure 6, FORS outperforms all routing and scheduling solutions, sig-
nificantly improving the throughput compared to these existing approach. Notably,
FORS increases the throughput per server from 87-88 Gbps to 137 Gbps. With 326
servers in the DAQ network, this improvement results in a total network through-
put increase from 28 Tbps to 44 Tbps.The throughput achieved by FORS decreases
more gracefully than the other solutions when the bandwidth is reduced. Again, sce-
narios 1F SW0 and 1F SW0,5,11 exhibit the same throughput. This similarity is due
to FORS being conflict-free and the exchanges being synchronized. Despite the addi-
tionnal failures in 1F SW0,5,11, 1F SW0 and 1F SW0,5,11 require the same number
of phases for the all-to-all exchange. Consequently, the unique parameter that fluctu-
ates the throughput is the number of phases, which increases upon failures to prevent
conflicts. The higher number of phases increases the duration of the all-to-all comple-
tion time. This is true only for FORS. For the other solutions, the number of phases
is unchanged. The throughput is determined by the number of conflicts that creates
congestion which in turn fluctuates the throughput. The number of phases computed
by FORS is influenced by the minimum bandwidth available between the leaf and
spine switches. In both scenarios, the bandwidth is reduced by 1, resulting in an iden-
tical number of phases and similar results. The same applies to scenarios 2F SW0, 2F
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Fig. 6: Evaluation of FORS throughput compared to the default routing algorithms
Ftree/Min-Hop and the adaptive routing version of Ftree. To obtain the total through-
put achieved by the DAQ application, one can multiply the throughput per server by
the number of servers in the DAQ application, which is 326. The error bars repre-
sent the minimum, mean and maximum values over one minute of measurement. The
fat-tree topology of the studied data acquisition network is FT(2;20,18), illustrated in
Figure 2. The failure scenarios noted with ”*” are the ones where an ILP model was
needed to compute the routing solution.

SW0,5,11 and SW18,19, where the bandwidth reduction is 2. This characteristic enables
FORS to maintain the same throughput, in the case of two spine switches being lost
(scenario SW18,19) and the loss of two links on a single leaf switch (scenario 2F SW0).

6.2 Increase in the number of phases

Figure 7 illustrates the multiplicative factor I for the number of phases in the fat-tree
topology, as a function of the bandwidth reduction. Both the fat-tree topology and the
bandwidth reduction are specified. The vertical bar for each curve indicates a reduc-
tion of the bandwidth by half. The multiplicative factor I for the number of phases is
the ratio of the number of phases with f bandwidth reduction over without bandwidth
reduction: I =

Pf

P0
. The bandwidth reduction corresponds to the maximum number

of link failures on the leaf switches. This implies that the bandwidth reduction is the
same for a single link failure and the loss of an entire spine, as the exchange is synchro-
nized. Additionally, our approach being conflict-free, the only parameter affecting the
throughput is the number of phases in the all-to-all scheduling which is optimal and
dependent on the bandwidth reduction. As proved in Section 4, the optimal number

of phases is computed by the formula: Pf =
⌈
M0(P−M0)

M0−f

⌉
, where f is the bandwidth
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Fig. 7: Multiplicative factor for the number of phases as a function of the bandwidth
reduction f between leaf and spine switches for several fat-tree topologies. FT(2;8,16)
contains 128 servers, FT(2;16,16) contains 256 servers, FT(2;20,18), our use-case DAQ
network, contains 360 servers, FT(2;16,32) contains 512 servers and FT(2;32,32) con-
tains 1024 servers. The vertical lines correspond to the loss of half the bandwidth for
each topology.

reduction between the leaf and spine switches, P is the number of servers and M0

is the number of spine switches. Consequently, as the bandwidth reduction increases,
the throughput decreases, but the decline is less pronounced compared to other solu-
tions (as observed in Figure 6). This is because the increase in the number of phases
remains optimal and does not significantly impact throughput when the bandwidth is
reduced by less than half [65]. Furthermore, a scenario involving the loss of half the
bandwidth or more in a network is unlikely.

We present the results for several fat-tree topologies: FT(2;8,16), FT(2;16,16),
FT(2;20,18) (the topology of the use-case network), FT(2;16,32) and FT(2;32,32).
For all topologies, the number of phases increases only slightly up to about half of
bandwidth lost. For instance, this corresponds to f = M0

2 = 20
2 = 10 when half the

bandwidth is lost for the topology FT(2;20,18). This increase in the number of phases
proves sufficient to ensure the all-to-all exchange without conflicts even with half the
bandwidth lost in the network. Consequently, FORS is able to compute a scheduling
and routing solution with a number of phases only slightly higher than the number of
phases without bandwidth reduction, resulting in a minimal drop in throughput.

6.3 Computation time

We measured the computation time of our solution under various randomly generated
failure scenarios with the number of failures varying from 1 to the loss of half the
links in the entire topology. We run Gurobi with a ”11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz” processor, using 8 threads. The average computation time to
find a routing solution for the topology of the studied DAQ network (FT(2;20,18))
is 29.72 seconds, with a minimum value of 27.399 seconds and a maximum value of
37.554 seconds. While the computation time needed to find a routing solution is not
excessively long, it remains an inconvenience. However, these computation times do
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not apply to all failure scenarios. In scenarios where the number of spines impacted
by failures is strictly superior to the bandwidth reduction, a routing solution can be
found in polynomial time, as they are computed by the routing algorithm described
in 5.1. Furthermore, one potential approach is to pre-calculate a routing solution for
all complex failure scenarios.

6.4 Operational constraints

To conduct our evaluation, we manually deactivated links and reproduced various fail-
ure scenarios in order to evaluate FORS and compare it with other possible approaches.
This allowed us to demonstrate the potential of FORS. However, the implementation
is currently limited by Infiniband’s lack of flexibility in implementing new static rout-
ing tables in the event of failures. Currently, the routing tables generated by FORS are
applied using the “file” routing engine, which loads the routing table from a file [55].
The file needs to be regenerated for each failure scenario. However, the challenge with
this approach arises from the limitation that only reachable spines can be used as
routes. If a failure occurs on a spine, FORS generates a new scheduling and associated
routing tables, excluding the affected spine as a potential route. In the meantime, traf-
fic will not be routed in the network, generating traffic loss. We hope this limitation
to be lifted in future releases of Infiniband. Further, this limitation does not exist in
Ethernet networks; therefore, FORS is readily deployable on these networks.

7 Related work

Optimization of the all-to-all collective exchange pattern has already been largely
addressed and discussed. Numerous solutions have introduced scheduling algorithms
that optimize bisection bandwidth [18, 20] or are applied to diverse network topolo-
gies [25] such as Butterfly [21, 25] and Dragonfly [19]. However, these approaches do
not consider failure scenarios.

In Scheduling-Aware Routing solutions [70] [71] [72], the authors attempted to
make the all-to-all communication schedule free of congestion by spreading the traf-
fic out more evenly over time. They are able to limit the number of communications
sharing a link in the all-to-all schedule to two. However, in this paper [65], the authors
proved the optimal number of phases based on the remaining bandwidth in the net-
work. Here, we are able to reach that number enabling us to achieve an optimal
conflict-free all-to-all schedule.

Alternate routing strategies, such as adaptive routing [73] [74] [75], aim to balance
the traffic dynamically to reduce congestion. Nevertheless, we measured the perfor-
mance of such solutions in the studied data acquisition (DAQ) network and it revealed
that adaptive routing is unsuitable for bursty traffic, offering minimal time for routing
adjustments in the event of failures.

Another routing algorithm named wFatTree [76] is an adaptation of Ftree rout-
ing with advanced load-balancing. The authors showed that wFatTree distributes the
congestion on the links more evenly than Ftree, but congestion is still present, while
FORS is a congestion-free solution.
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While optimal oblivious routing that often rely on Integer Linear Programming
(ILP) techniques have already been proposed [77] [66], the solutions are hardly appli-
cable for large-scale systems due to the computation time of the routing solution,
and they do not handle the scheduling. Here we propose an algorithm with reduced
complexity to solve the scheduling in all scenarios and the routing for basic failure sce-
narios. Furthermore, our proposed ILP model is able to solve the routing for specific
failure scenarios in approximately 30 seconds.

A relevant approach to improve the bandwidth capacity in large-scale networks
involves using demand-aware topologies [78] [79], which can be configured to match
specific traffic patterns. However, in the context of the studied DAQ network, demand-
aware topologies are not suitable, as the essential requirement of the DAQ application
is a continuous utilization of all-to-all exchanges without involving any other traffic
patterns. Consequently, in this paper, we focus on a static topology which is the
fat-tree topology.

The fault-tolerance of the topology can further be improved by using the HyperX
topology [80] [81] or F10 topology [82]. HyperX shows better throughput with the
all-to-all exchange compared to the fat-tree topology [81]. F10 is a variation of a fat-
tree that breaks its symmetry to provide more path diversity along with a routing
algorithm. It remains to see whether a scalable scheduling algorithm can be proposed
for such topologies.

8 Conclusion

In this paper, we address an observed gap that lies in the absence of scheduling and
routing algorithms handling network failures for all-to-all traffic. This gap is important
to address, as proved by our measurements, where utilizing a scheduling algorithm
neglecting bandwidth reduction induces congestion in the studied data acquisition
network. Consequently, the throughput of the DAQ network drops from 46 Tbps to
28 Tbps with a single failure.

In order to improve the performance in case of failures, we present FORS, a robust
scheduling and routing solution designed to maintain high throughput in the event of
failures on large-scale networks with a fat-tree topology and an all-to-all communi-
cation pattern. More specifically, we introduce a scheduling algorithm that produces
congestion-free schedules for all-to-all exchanges and prove its optimality. Furthermore,
we present a routing solution, composed of a simple algorithm and an Integer Lin-
ear Programming (ILP) model which, along with our scheduling approach, produces
a congestion-free routing solution. The evaluation of our solution on a real large-scale
Infiniband network demonstrated throughput improvement in the event of network
failures compared to actual viable solutions in the studied network.

Notably, our solution achieves a total throughput of 44 Tbps in the presence of
a single link failure, surpassing existing solutions that, at best, achieve 28 Tbps.
Additionally, we demonstrate that FORS degrades more gracefully, experiencing only
a minimal additional loss of a few Gbps as the bandwidth reduction increases.
Finally, FORS demonstrates resilience by tolerating the failure of two switches, with
throughput decreasing from 140 Gbps to 132 Gbps.
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Appendix A Proof of the destination function in
the scheduling algorithm

Table A1: Notations of the variables in the destination function.

Notation Description
M1 The number of leaf switches.
M0 The number of servers.
FT (2;M0,M1) A fat-tree topology with 2 layers.
f The reduction of the bandwidth

between each leaf switch and the root
of the tree.

P = M0M1 The number of servers and phases.

Pf =
⌈
M0(P−M0)

M0−f

⌉
> P The number of phases with bandwidth

reduction.
s ∈ [0,M0M1] = αs + γsM0 The index of a server.
γs ∈ [0,M1 − 1] The index of the parent leaf switch.
αs ∈ [0,M0 − 1] The index of the server among the

servers below the leaf switch.

Θ̃(s) =
⌈

sM0
M0−f

⌉
The set of phases when server s trans-
mits.

Θs =
{
Θ̃(i+ θs)− αs s.t. i ∈ [0, P −M0 − 1]

} Shifted subset of the image of Θ̃(s).

θs =
⌊
(αs−1)(M0−f)

M0

⌋
+ 1 Starting index from the sequence Θ̃s.

T (s, p) =

{
1 if p ∈ Θs

0 otherwise

Transmission function defined on pairs
(s, p) where s ∈ [0, P − 1] is a server
and p ∈ [0, Pf − 1] a phase.

NT (s, p) The number of times s transmits
before phase p.

Dleaf =
(
NT (s, p) + θs +

⌊
NT (s,p)

lcm(M1−1,M0)

⌋)
%(M1 − 1) The destination leaf.

Dserver = (NT (s, p) + θs)%M0 The index of the destination server
below leaf .

d(s, p) =
(
DleafM0 +Dserver + (γs + 1)M0

)
%P The schedule d for a given server s in a

phase p, if the server transmits at this
phase, ie., if T (s, p) = 1.

We prove that the destination function is well-defined and allows each server to
transmit without congestion to all the other P −M0 servers that are below different
leaves. The notations are described in Table A1. We start by proving technical Lemmas
about the sets Θs and the function NT . Then, in Lemma 3 we prove that different
servers have different destinations at each phase. In Lemma 4 we prove that a server
never transmits two times to the same server. We show in Lemma 5 shows that our
schedule creates no congestion and we conclude this section with our main Theorem 1.
Lemma 1. ∀s ∈ [0, P − 1],∀x ∈ Θs, then x ∈ [0, Pf − 1].
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Proof. In this proof, we use the fact that for all a ∈ Z, a ≤ ⌈a⌉ < a + 1 and a − 1 <
⌊a⌋ ≤ a. The smallest element in Θs is xmin = Θ̃(θs)− αs and we have

xmin =

⌈(⌊
(αs − 1)(M0 − f)

M0

⌋
+ 1

)
M0

M0 − f

⌉
− αs

> ⌈αs − 1⌉ − αs ⇒ xmin ≥ 0

The largest element is xmax = Θ̃(P −M0 − 1 + θs)− αs and we have

xmax=
⌈(⌊

(αs+P−M0−2)(M0−f)
M0

⌋
+1

)
M0

M0−f

⌉
−αs

≤
⌈
Pf+(αs−2)+

M0
M0−f

⌉
−αs

<Pf−1+
M0

M0−f

⇒ xmax ≤ Pf − 1

Lemma 2. At a given phase, the difference between the number of transmissions for
any two servers is at most one:
∀s, s′ ∈ [0, P − 1], ∀p ∈ [0, Pf − 1], |NT (s, p)−NT (s′, p)| ≤ 1.

Proof. First, we can observe that the number of phases between k consecutive trans-
missions of a given server is between ⌊(k−1)l⌋ and ⌈(k−1)l⌉, where l = M0

M0−f . Indeed,
for all i ∈ N, we have

Θ(i + k − 1)−Θ(i) = ⌈(i + k − 1)l⌉ − ⌈il⌉

It follows that

(i+k−1)l−1−il<Θ(i + 1)−Θ(i) < (i + k − 1)l − il + 1

⌊(k−1)l⌋≤(Θ(i + 1)−Θ(i)) ≤ ⌈(k − 1)l⌉

Now consider for the sake of contradiction that the difference in the number of
transmitted messages is greater than one for two servers s and s′, and let p′2 be the
first phase when this occurs, ie., s′ transmits and NT (s′, p′2) = NT (s, p′2) + 2.

From the previous observation, s′ performs k = NT (s′, p′2) transmissions between
phase 0 and p′2 and p′2 ≥ ⌊kl⌋

Let p2 ≥ p′2 + 2 be the first phase after p′2 such that NT (s, p2) = NT (s′, p′2) = k.
Again using the previous observation we obtain the following contradiction

⌈kl⌉ ≥ p2 ≥ p′2 + 2 ≥ ⌊kl⌋+ 2 ≥ ⌈kl⌉+ 1

24



Remark 1. In the remaining proofs, we use the following fact: for any integers a, b, c,
if a%c = b%c and |a− b| < c, then a = b.
Lemma 3. If T (s, p) = T (s′, p) = 1 and d(s, p) = d(s′, p) for some s, s′ ∈ [0, P − 1],
then s = s′.

Proof. Assume that d(s, p) = d(s′, p) for some s, s′ ∈ [0, P − 1]. Observe that M0

divides P and we have d(s, p) ≡ Dserver (mod M0)1. So, d(s, p) = d(s′, p) implies that

NT (s, p) + θs ≡ NT (s′, p) + θs′ (mod M0). (A1)

The following Claims help us prove that αs = αs′ .
For simplicity, we define, for p ≥ 0, T (p), resp. NT (p), the transmission function

of server 0, resp. the number of transmissions of server 0 before phase p, if server 0
continues to transmit using the same pattern after phase Pf . More formally, T (p) = 1

if and only if ∃i ≥ 0, Θ̃(i) = p, and NT (p) =
∑p−1

i=0 T (p)
Claim 1 T (s, p) = T (p + αs).

Proof: We have the following equivalences:

T (s, p) = 1⇔∃i ∈ [0, P −M0 − 1], p = Θ̃(i + θs)− αs

⇔∃i ∈ [0, P −M0 − 1], p + αs = Θ̃(i + θs)

⇔T (p + αs) = 1

Claim 2 NT (s, p) = NT (p + αs)−NT (αs)
Proof:

NT (s, p) =

p−1∑
i=0

T (s, i) =

p−1∑
i=0

T (i + αs)

=

p+αs−1∑
i=0

T (i)−
αs−1∑
i=0

T (i)

= NT (p + αs)−NT (αs)

Claim 3 θs = NT (αs).
Proof: Observe that NT (αs) is the number of transmissions performed by server 0
before phase αs, so it is the cardinal of the set Θ0 ∩ [0, αs − 1], so it is the number
of integers i such that Θ̃(i) ≤ αs − 1. Since Θ̃ is a strictly increasing function, this is
equivalent to finding the first integer i such that Θ̃(i) ≥ θs.

We already saw in the proof of Lemma 1 that Θ̃(θs) ≥ αs, so it remains to show
that Θ̃(θs − 1) < αs. We have

Θ̃(θs − 1) =

⌈⌊
(αs − 1)(M0 − f)

M0

⌋
M0

M0 − f

⌉
1Recall that a ≡ b (mod c) is equivalent to a − b is divisible by c
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≤ ⌈αs − 1⌉ < αs

Claim 4 NT (p + αs) = NT (p + αs′).
Proof: From the two previous claims we have

NT (s, p) + θs = NT (p + αs)

From Equation A1 and the fact that |NT (p + αs) − NT (p + αs′)| ≤ M0 − f < M0

(because |αs − αs′ | < M0), then, using Remark 1, the claim is proved.
Claim 5 αs = αs′ .

Proof: From the previous claim we know NT (p + αs) = NT (p + αs′). Since T (s, p) =
T (s′, p) = 1 we have T (p + αs) = T (p + αs) = 1 (Claim 1), hence

NT (p + αs + 1) = NT (p + αs′ + 1) = NT (p + αs) + 1.

Clearly NT is a non-decreasing function so p + αs = p + αs′ which implies αs = αs′ .
Remaining Proof of the Lemma: Since Dleaf and Dserver depend only on αs (and not
on γs) and αs = αs′ , then

((γs + 1)M0)%P = ((γs′ + 1)M0)%P

Also, γs ∈ [0,M1 − 1] implies that (γs + 1)M0 ∈ [M0, P ] so that

|(γs + 1)M0 − (γs′ + 1)M0| < P

so, from Remark 1, we obtain

A + (γs + 1)M0 = A + (γs′ + 1)M0 ⇒ γs = γs′

so that s = s′.

Lemma 4. If T (s, p) = T (s, p′) = 1 and d(s, p) = d(s, p′) for some p, p′ ∈ [0, Pf − 1],
then p = p′.

Proof. As in the previous Lemma, assuming d(s, p) = d(s, p′) implies

NT (s, p) ≡ NT (s, p′) (mod M0)

⇒∃k0, NT (s, p)−NT (s, p′) = k0M0

Also, by dividing by M0 both sides of the equality d(s, p) = d(s, p′), we obtain (with
L = lcm(M1 − 1,M0))

NT (s,p)+
⌊

NT (s,p)

L

⌋
≡NT (s,p′)+

⌊
NT (s,p′)

L

⌋
(mod M1−1)

⇒∃k1, NT (s,p)−NT (s,p′)=
⌊

NT (s,p′)
L

⌋
−
⌊

NT (s,p)

L

⌋
+k1(M1−1)
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This gives the following Bézout’s identity:

k0M0 + k1(M1 − 1) =

⌊
NT (s, p′)

L

⌋
−
⌊
NT (s, p)

L

⌋
that have solutions only if the right side is a multiple of gcd(M0,M1 − 1). But one
can see that, since NT (s, p′) < M0(M1 − 1) = L × gcd(M0,M1 − 1), then the right
side of the equation is smaller than gcd(M0,M1 − 1), so it is null, and k0 = k1 = 0.
So NT (s, p) = NT (s, p′), which in turns gives p = p′.

In the remaining, we call a group of servers, the set of servers below a given leaf
switch. More precisely, a server s is in group g if γs = g.
Lemma 5. At most M0 − f servers in the same group transmit at the same time. At
most M0 − f servers in the same group are destinations at the same time.

Proof. The servers in a group g are exactly the servers s with id αs+gM0. By definition
of T , the number of such servers that transmit at a given phase p is equal to the
number of times the server with id γsM0 (i.e., the first server in the group) transmits
in the next M0 phases. By construction, this number is M0 − f . Since this is true for
each leaf, in total, there is at most M1(M0 − f) senders at each phase.

About the destinations, assume for the sake of contradiction that k > M0 − f
servers below a given leaf, with id of the form i + gM0, are destinations at a given
phase p. let r be such a destination server and let s be the sender of the transmission
received by r. It is clear that the server s′ = αs +(γs +1)M0 mod P have destination
r′ = αr + (γr + 1)M0 mod P . This implies that there are k servers with id of the
form i + (g + 1)M0 that are destinations at phase p. Hence below every leaf, more
than M0 − f servers are destinations. This is a contradiction as it implies that there
are more than M1(M0 − f) receivers, which is more than the number of senders.

We are now ready to present our all-to-all schedule. The schedule d is well-defined
for all the communications between servers of different groups. The communications
between servers of the same group can be scheduled arbitrarily at each phase, between
the servers that do not transmit using d. Let g be any schedule such that, at each
phase p, at least f servers in each group that do not transmit according to d, transmit
to other servers in the same group that are not receivers, until the servers in the same
groups have exchanged all their messages.
Theorem 1. The schedule defined by d for the communication between each server
and the other servers outside its group, and by g for the communications between
servers in the same group, is a congestion-free all-to-all schedule.

Proof. From Lemma 3 and Lemma 4, we know that no collision occurs, i.e., no two
different servers transmit at the same time to the same server, and that each server
never transmits two times to the same server. Lemma 5 proves that our schedule
creates no congestion.

Since, using d, a server transmits P − M0 times during the Pf phases of the
execution (and each destination is different), then all the servers are reached, except
the ones that are in the same group, which are reached using schedule g as explained
below.
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As we discussed at the beginning of the section, we consider f >
⌊
M0

M1

⌋
. Since f

servers in a group can communicate at each phase and there are Pf phases, at least
fPf communications can occur concurrently with the schedule d. In a group, M2

0

communication must be performed in total, so we have to verify that fMf ≥ M2
0

which is equivalent to

f
⌈

M0(P−M0)
M0−f

⌉
1

M2
0
≥1 ⇐ f

M1−1
M0−f ≥1

which follows from our initial assumption f >
⌊
M0

M1

⌋
.

Appendix B The spine pinning problem

Fig. B1: Illustration of the deterministic nature of the paths in a two-layer fat-tree
topology. On the left, all servers have one unique path to join spine 9 represented by
different dashed lines. On the right, all spine switches have one unique path to join
servers 0..3.

In a fat-tree topology, routing can be simplified by selecting a spine for each source-
destination pair, giving us the complete path for routing the communication flow. In
a two-layer fat-tree topology, as in the studied DAQ network, the leaf switches are
directly connected to the spines, making this statement evident. However, this properly
extends to fat-tree topologies with more than two layers as well. In a k-ary-L-tree [32]
fat-tree topology, the shortest path to go from a spine to a destination server is always
unique. Figure B1 represents a two-layer fat-tree topology, as illustrated, all servers
have one unique path to join spine 9 and all spine switches have one unique path
to join servers 0..3. This property is valid on any type of k-ary-L-tree fat-tree, even
in topologies with more than 2 layers. The path from the spines to a server remains
deterministic, and vice versa, regardless of the scale of the network.

This property makes the routing problem easy to solve with a straightforward
algorithm explained in Section 5.1, when the bandwidth reduction is uniform across
all leaf switches or when there is no reduction in bandwidth. However, the routing
problem becomes more challenging to solve in specific failure scenarios that involve
unequal bandwidth reduction between leaf switches, as introduced in Section 3.2.

Figure 5 illustrates a two-layer fat-tree topology with a failure scenario involving
an unequal number of paths between different leaf switches. In the event of two link
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failures in this topology, specifically, one between switches 0 and 8 and another between
switches 1 and 9, the number of paths available between switches 0 and 1 is reduced
to 2, see long dashes in Figure 5. Whereas all other leaf switches maintain 3 paths
available to communicate with switches 0 and 1. This limitation implies that if, during
a single phase, there are more than two communications between switches 0 and 1,
congestion is unavoidable. To address such failure scenarios, our proposed scheduling
algorithm, described in Section 4, always produces a schedule where the number of
communications between two leaf switches cannot be greater than the number of
spines. Consequently, as long as there is at least one path between two leaf-switches,
the scheduling produced by our algorithm ensures that a routing solution is possible.
With all these considerations, the complexity of the routing problem is significantly
reduced to choosing a single spine for each pair of communications at each phase. The
scheduling algorithm we have implemented introduces a key property, enabling us to
resolve all failure scenarios, as long as there is a path available between two servers.
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Patrycja, Gutić, Neven, Hegeman, Jeroen, Izquierdo Moreno, Guillermo, James,
Thomas Owen, Karimeh, Wassef, Kartalas, Miltiadis, Krawczyk, Rafa l Dominik,
Li, Wei, Long, Kenneth, Meijers, Frans, Meschi, Emilio, Morović, Srećko, Orsini,
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Šimelevičius, Dainius, Tzanis, Polyneikis, Vazquez Velez, Cristina, Žejdl, Petr,
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